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ABSTRACT
Watermarking has become a popular and attractive technique to
protect the Intellectual Property (IP) of Deep Learning (DL) models.
However, very few studies explore the possibility of watermarking
Deep Reinforcement Learning (DRL) models. Common approaches
in the DL context embed backdoors into the protected model and
use special samples to verify the model ownership. These solutions
are easy to be detected, and can potentially affect the performance
and behaviors of the target model. Such limitations make existing
solutions less applicable to safety- and security-critical tasks and
scenarios, where DRL has been widely used.

In this work, we propose a novel watermarking scheme for DRL
protection. Instead of using spatial watermarks as in DL models,
we introduce temporal watermarks, which can reduce the potential
impact and damage to the target model, while achieving ownership
verification with high fidelity. Specifically, (1) we design a new dam-
age metric to select sequential states for watermark generation; (2)
we introduce a new reward function to efficiently alter the model’s
behaviors for watermark embedding; (3) we propose to utilize a
predefined probability density function of actions over the water-
mark states as the verification evidence. Our method is general and
can be applied to various DRL tasks with either deterministic or
stochastic reinforcement learning algorithms. Extensive experimen-
tal results show that it can effectively preserve the functionality
of DRL models and exhibit significant robustness against common
model modifications, e.g., fine-tuning and model compression.
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1 INTRODUCTION
Deep Reinforcement Learning (DRL) has demonstrated its effective-
ness in various complex tasks, e.g., robotics control [9], competitive
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video games [17, 22, 31], and autonomous driving [20]. Due to the
excellent performance and robustness, DRL is now in an accelerat-
ing process of commercialization. Since generating a DRL policy
requires a huge amount of computation resources as well as ex-
pertise, a well-trained DRL model has become the core Intellectual
Property (IP) of AI applications and products. It is of paramount im-
portance to protect such assets, and prevent illegitimate plagiarism,
unauthorized distribution and reproduction of DRL models.

One common approach to IP protection is watermarking [7],
which was originally introduced to identify the ownership of im-
ages, audios, videos, etc. Such watermarks are designed to be ro-
bust and cannot be removed by common signal processing tech-
niques. Motivated by this idea, several watermarking schemes were
proposed to protect the copyright of Deep Learning (DL) models
[1, 16, 26]. These solutions carefully craft a set of unique sample-
label pairs as watermarks. They train a model to memorize the
correlation between these samples and labels, which will not be
recognized by other models. For verification, the owner remotely
queries the suspicious model with these samples and uses the corre-
sponding predictions as the ownership evidence. Thesemethods can
preserve the performance of the watermarked models on normal
samples and ensure the watermarks cannot be removed by common
model transformations, e.g., fine-tuning, model compression, etc.

Challenges arise when applying existing solutions to or design-
ing new ones for DRL models. First, although a DRL policy also
adopts deep neural networks, it performs learning and prediction
in a sequential and stochastic control process. The characteristics
of the policy are reflected by sequences of behaviors, instead of
single input-output pairs at one time instant. The high stochasticity
in DRL policies can reduce the verification accuracy when using
discrete watermark samples while ignoring the sequential features.
Second, the predicted action at one moment can affect the following
states and actions, and even the entire process. One abnormal state
(e.g., adversarial perturbation [24] or backdoor triggers [13, 28]) can
possibly cause the agent to crash or fail. As a result, watermarking
methods for conventional DL models can bring unexpected conse-
quences to DRL applications. Such severity is amplified when the
DRL model is used in safety- or security-critical scenarios. Third, all
existing watermarks are spatial, which can be detected or removed
by sophisticated attacks [2, 6, 10].

To our best knowledge, the only solution for DRL watermarking
is [3], which embeds a sequential pattern of out-of-distribution
states and actions of an extra environment into the target DRL
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policy. Such requirement is not easy to satisfy under most scenarios.
Besides, deploying the DRL model under a different environment
can be easily recognized by the adversary, who can then simply
falsify the prediction results to invalidate the verification process.
More importantly, this work only considers one deterministic DRL
model (DQN). Its effectiveness for other models, and robustness
against model transformations remain unknown.

Motivated by these limitations, we propose a novel temporal-
based watermarking methodology for DRL policies. Different from
[3], we adopt the sequences of states and action probability dis-
tributions within the same environment as the watermarks. This
can increase the risk of model failure caused by the watermark
interference. We propose three techniques to overcome this issue.
First, we introduce damage-free states, from which the DRL system
can still be safe and reliable when there is a deviation of action
probability. We design a new algorithm to identify such states, and
use them for the watermarks. Second, we design a new reward func-
tion for both deterministic and stochastic reinforcement learning
algorithms, which can efficiently implant the desired watermark
behaviors into the model. Third, we propose to use statistic tests to
verify the action probability distributions of the damage-free wa-
termark states. The watermarked model can still be distinguished
even it performs normally on the watermark states.

Our approach is more general-purpose than [3]. Comprehensive
evaluations show it can achieve very high verification accuracy and
low error rate for both deterministic and stochastic DRL contexts
and tasks, and strong robustness against various model transfor-
mations. The main contributions of this paper are as follows:
• A novel temporal-based watermarking scheme for deterministic
and stochastic DRL models and tasks.
• A new damage metric to generate watermarks which are safe
to be embedded into the target model.
• A new reward function to alter the behaviors of DRL models in
a controllable and efficient way.
• Adoption of statistic tests to verify the action probability distri-
butions of watermark states for watermark extraction.
• Extensive experiments to illustrate the functionality and robust-
ness of the proposed scheme under various system settings.

2 RELATEDWORK
2.1 Watermarking DL Models
A quantity of works focus on the watermarking schemes for Deep
Learning models. These methods can be classified into two cate-
gories. The first one is white-box watermarking. Motivated by the
traditional watermarking techniques on digital multimedia, this
scheme embeds watermarks into DL models’ parameters without
altering the models’ performance. For example, Uchida et al. [27]
injected a bit-vector as the watermark into the model parameters
via a particular parameter regularizer in the loss function. Rouhani
et al. [19] implanted watermarks in the probability density function
of the activation layers, which has small impacts on the static prop-
erties of model parameters. However, these parameter-embedding
solutions require the model owner to have full accesses to the pa-
rameters during verification, and become ineffective in the scenario
where the target model is a black-box to the external users.

The second category is black-box watermarking. The model
owner trains (or fine-tunes) the model in a special way to make
it give unique output for certain carefully-crafted samples, while
preserve the same behaviors for normal samples. During the veri-
fication phase, the owner can just use those samples to query the
suspicious model, and make decisions based on the prediction re-
sults. For instance, some works utilized backdoor attack techniques
to watermark the DL model, and used samples with triggers or out
of distribution to verify the existence of watermarks [1, 16, 18, 30].
Le Merrer et al. [15] adopted adversarial examples to detect the
suspicious models, which can accurately fingerprint the classifica-
tion boundaries of the target model. These approaches dominate
the ones in the first category, as they enable verification with only
black-box accesses, and achieve very satisfactory accuracy.

2.2 Watermarking DRL Models
As mentioned in Section 1, considering the sequential and safety-
critical features of DRL models, it is more challenging to embed
watermarks into DRL policies. To the best of our knowledge, there
is only one watermarking solution in the reinforcement learning
scenario [3] up to the date of writing. To reduce the negative impact
of watermarks, this solution adopts a set of out-of-distribution state
sequences under a different environment for watermark embed-
ding and verification. This solution can indeed preserve the model
behaviors and robustness within the target environment. However,
the requirement of an extra environment can decrease its applica-
bility. It is also very easy for an adversary to detect the abnormal
states and environments during testing, and then tamper with the
verification results. Besides, this work is in a lack of generality, as it
only considers a deterministic DQN policy. The robustness of such
watermarks against model transformation was never evaluated.

3 PROBLEM DEFINITION
3.1 System and Threat Models
A reinforcement learning policy describes a Markov Decision Pro-
cess (MDP). An MDP can be formulated as a tuple (S,A, P, 𝑟 , 𝛾),
where S is the state space,A is the action space, P : S×A×S→ [0, 1]
is the state transition probability, 𝑟 (𝑠, 𝑎) is the reward function and
𝛾 ∈ [0, 1) is the discount factor where smaller values place more
emphasis on immediate rewards. During training, a DRL agent in-
teracts with an environment 𝑒𝑛𝑣 and learns a model 𝑀 (i.e., policy)
to predict the optimal action of the MDP based on the reward from
𝑒𝑛𝑣 . Given a state 𝑠 ,𝑀 outputs the action probability distribution
(APD) 𝑃 over A. A deterministic policy chooses the action with the
maximum probability directly, while a stochastic policy samples an
action from A following 𝑃 . Without loss of generality, we describe
the watermarking scheme for stochastic reinforcement learning
policies. It can be applied to the deterministic ones as well.

Figure 1 illustrates the overview of the framework for IP pro-
tection and ownership verification of DRL policies. We follow the
same system model as the conventional DL watermarking scenario
[1, 30]: we consider an unauthorized user (adversary) which obtains
an illegal copy of the target model𝑀 and attempts to use it for profit
without authorization. The adversary might use common model
transformation techniques (e.g., fine-tune, model compression) to
slightly alter the model to make it different from the original one.
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Such processing operations can also help the transformed model
adapt to the adversary’s own dataset or reduce the computation
complexity. The owner wants to verify and detect whether a suspi-
cious model𝑀 ′ is a plagiarized one from𝑀 . However, the owner
only has black-box accesses to 𝑀 ′, i.e., he can only observe the
produced actions within a given environment. To achieve this goal,
he can embed watermarks into his DRL model, causing it to have
unique behaviors over certain environmental states. During the
verification phase, he can query the suspicious model 𝑀 ′ with
these states, and collect the corresponding action sequences as the
evidence of model plagiarism if they match the watermarks.

3.2 Temporal Watermarking
Existing works focus on spatial watermarks, which can be invali-
dated by advanced attacks [2, 6, 10]. Instead, we propose a temporal
watermarking scheme, which is formally defined as below:

Definition 1. A temporal watermarking scheme is defined as a
tuple of probabilistic polynomial time algorithms (WMGen,Mark,
Verify), where
• WMGen generates a dataset C, which consists of 𝑛 sequences
of state and the corresponding APD pairs, with the length of 𝐿:

C ={𝑇𝑊𝑖 }𝑛−1𝑖=0
𝑇𝑊𝑖 = [(𝑠𝑖,0, 𝑃𝑖,0), (𝑠𝑖,1, 𝑃𝑖,1), ..., (𝑠𝑖,𝐿−1, 𝑃𝑖,𝐿−1)]

in which 𝑠𝑖, 𝑗 is the 𝑗-th state of the 𝑖-th sequence; 𝑃𝑖, 𝑗 is the
corresponding APD over A.
• Mark embeds the state sequences into a DRLmodel and outputs
the watermarked model 𝑀 such that for ∀ 𝑠𝑖, 𝑗 , 𝑖 ∈ [0, 𝑛), 𝑗 ∈
[0, 𝐿), the APD of 𝑀 will be changed from 𝑃𝑖, 𝑗 to 𝑃𝑖, 𝑗 . It also
produces the final datasetW of watermarks:

W ={𝑇𝑊 𝑖 }𝑛−1𝑖=0

𝑇𝑊 𝑖 = [(𝑠𝑖,0, 𝑃𝑖,0), (𝑠𝑖,1, 𝑃𝑖,1), ..., (𝑠𝑖,𝐿−1, 𝑃𝑖,𝐿−1)]

• Verify starts a suspiciousDRLmodel𝑀 ′with the states {𝑠𝑖, 𝑗 }𝑛−1,𝐿−1𝑖, 𝑗=0
and collects the state-APD sequences:

W′ ={𝑇𝑊 ′𝑖 }
𝑛−1
𝑖=0

𝑇𝑊 ′𝑖 = [(𝑠𝑖,0, 𝑃 ′𝑖,0), (𝑠𝑖,1, 𝑃
′
𝑖,1), ..., (𝑠𝑖,𝐿−1, 𝑃

′
𝑖,𝐿−1)]

If the distance betweenW andW′ is smaller than a predefined
value 𝜏 , Verify outputs 1. Otherwise it outputs 0.

3.3 Watermarking Requirements
As we discussed in Section 1, a good watermarking scheme should
have the following properties.
Requirement 1. (Functionality-preserving) Let𝑀 be thewell-trained
model without embedded watermarks. The watermarked model𝑀
should exhibit the competitive performance compared with 𝑀 . We
define 𝑝

𝑀,S
as the probability that𝑀 gets more cumulative rewards

from the environment during an episode than 𝑀 on the normal
state space S:

𝑝
𝑀,S

= 𝑃𝑟 (
𝑇−1∑
𝑗=0

𝛾 𝑗𝑟 (𝑠 𝑗 , 𝑀 (𝑠 𝑗 )) ≥
𝑇−1∑
𝑗=0

𝛾 𝑗𝑟 (𝑠 𝑗 , 𝑀 (𝑠 𝑗 )) − 𝛿, 𝑠0 ∽ S)

(1)

Owner Unauthorized Users

Fine-tune or
Compression

State-action Sequences

Initial State

Watermarked
DRL Model

Figure 1: Watermarking framework for IP protection and
ownership verification of DRL models.

where 𝑇 is the final time step of the current episode, 𝛿 is a small
variance that allows the rewards of𝑀 to exceed than that of𝑀 . We
expect 𝑝

𝑀,S
to be close to 1 as much as possible.

Requirement 2. (State-preserving) Previous work [3] adopted out-
of-distribution state sequences in a totally different environment
for watermarks. This can be easily recognized by the adversary
who will then tamper with the verification results. To make the
verification stealthier, a good watermarking scheme should use the
watermark states sampled from the same state space S, i.e.,

∀ 𝑖 ∈ [0, 𝑛), 𝑗 ∈ [0, 𝐿), 𝑠𝑖, 𝑗 ∈ S. (2)

Requirement 3. (Damage-free) The most common method is to
embed backdoors into the models as the watermark. The existence
of backdoors can significantly change the prediction results on
the watermark samples, which can lead to severe consequences in
safety- and security-critical tasks, e.g., autonomous driving. So a
good watermarking scheme should be damage-free to the target
model. Let 𝑝

𝑀,W
be the damage value of𝑀 onW. Similar to 𝑃

𝑀,S
,

we define 𝑝
𝑀,W

as the probability that𝑀 obtains more cumulative
rewards on the watermarksW, i.e.,

𝑝
𝑀,W

= 𝑃𝑟 (
𝐿−1∑
𝑗=0

𝛾 𝑗𝑟 (𝑠 𝑗 , 𝑀 (𝑠 𝑗 )) ≥
𝐿−1∑
𝑗=0

𝛾 𝑗𝑟 (𝑠 𝑗 , 𝑀 (𝑠 𝑗 )) − 𝛿 ′, 𝑠 𝑗 ∽W) .

(3)
where 𝛿 ′ is the parameter as in Eq. 1.𝑀 is damage-free if 𝑃

𝑀,W
is

close to 1.
Requirement 4. (Robustness) Since the adversary may modify the
watermarked model with common model transformations, we ex-
pect that the embedded watermarks should be robust and cannot be
removed after those changes. Formally, let 𝑑

𝑀,𝑀′ be the distance of
APDs between the watermarked model𝑀 and transformed model
𝑀 ′ over the watermark states:

𝑑
𝑀,𝑀′ =

1
𝑛

𝑛−1∑
𝑖=0

𝐿−1∑
𝑗=0

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝑖, 𝑗 , 𝑃 ′𝑖, 𝑗 ), (4)
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ℂ = {[(𝒔𝟎 , 𝑷𝟎), (𝒔𝟏 , 𝑷𝟏), … , (𝒔𝑳$𝟏 , 𝑷𝑳$𝟏)]}
Watermark Candidates

Training Set

Watermarked Model

Embedding Phase

Suspicious ModelEnvironment𝐬𝟎

Verify
TrueProtected Model

Non-protected Model FalseVerification Phase

𝕎 = {[(𝒔𝟎 , /𝑷𝟎), (𝒔𝟏 , /𝑷𝟏), … , (𝒔𝑳$𝟏 , /𝑷𝑳$𝟏)]}
Watermarks

𝕎′ = {[(𝒔𝟎 , 𝑷′𝟎), (𝒔𝟏 , 𝑷′𝟏), … , (𝒔𝑳$𝟏 , 𝑷′𝑳$𝟏)]}

WMGen
Mark

𝐬𝟎

Figure 2: Embedding and verification phases of our temporal watermarking methodology.

where 𝑃𝑖, 𝑗 and 𝑃 ′
𝑖, 𝑗

are the APDs of 𝑀 and 𝑀 ′ on the watermark
state 𝑠𝑖, 𝑗 . If𝑀 is robust against model transformations, the value of
𝑑
𝑀,𝑀′ should be smaller than a predefined threshold.

4 METHODOLOGY
In this section, we describe our novel temporal watermarking
methodology for DRL policies. Our solution consists of three new
algorithms, with the workflow illustrated in Figure 2. During the
embedding phase, the model owner calls WMGen to generate a
dataset of watermark candidates C. Then he usesMark to train a
watermarked model and obtain the final watermark sequencesW.
During the verification phase, he queries a suspicious model with
the states of each watermark sequence, and extracts the runtime
resultsW′. By comparingW′ andW using Verify, the owner can
verify if the suspicious model is the watermarked one.

Our method can satisfy all the requirements in listed Section
3.3 without the need of extra environments. This is achieved with
three innovations. In WMGen, we search the damage-free states
to generate safe watermark candidates with minimal interference
on the DRL policy. InMark, we introduce new reward functions
that enable the policy to memorize the watermarks during training.
In Verify, we adopt statistic tests to compare the probability distri-
butions of state-APD pairs to identify the existence of watermarks.
Below we present the details of each algorithm.

4.1 Watermark Generation
As the first step, we need to carefully design watermarks to satisfy
the requirements of state-preserving and damage-free. We intro-
duce a new concept of damage-free state to achieve these goals:

Definition 2. (Damage-free State) Let 𝑠 ∈ S, 𝑃 be a state and the
corresponding APD. 𝑃 defines 𝑎∗ ∈ A, which is the action with the
highest probability. 𝜎 is the variance of 𝑃 : 𝜎 = Var(𝑃). 𝑠 is (𝜖,𝜓 )
damage-free if 𝜎 is smaller than 𝜖 and the DRL agent can achieve a
minimum score of𝜓 at the end of an episode when it executes an
arbitrary action 𝑎 ∈ A/𝑎∗.

Informally, 𝑠 is damage-free if the agent can choose any legal
actions at state 𝑠 to complete the task perfectly. In contrast, a large
APD variance means that the agent tends to choose a certain action
𝑎∗ with strong will at state 𝑠 , indicating that 𝑠 is critical for the
task and may cause crash if other actions are selected instead. With
damage-free states, we define the watermark candidate as follow.

Definition 3. (Watermark Candidate) Given a clean DRL model𝑀 ,
a watermark candidate is a unique temporal sequence of damage-
free states and the corresponding APDs predicted by𝑀 :

𝑇𝑊 = [(𝑠0, 𝑃0), (𝑠1, 𝑃1), ..., (𝑠𝐿−1, 𝑃𝐿−1)]

The watermark candidate can guarantee that the changes of
APD on damage-free states have negligible impact on the agent’s
behaviors, but still observable for ownership verification.

We empirically search for the watermark candidates in a brute-
force way, as illustrated in Algorithm 1.

The goal of WMGen is to identify a dataset of watermark candi-
dates from the target DRL model𝑀 to be watermarked1. The model
owner takes the following steps to generate qualified watermark
candidates. (1) If the number of watermark candidates is smaller
than 𝑛, he randomly samples a normal state 𝑠 ∈ S. Originating from
𝑠 , he analyzes the behaviors of the model 𝑀 , and obtains the APD
𝑃 and the action 𝑎∗ with the highest probability (Line 6). (2) He
checks whether 𝑠 is damage-free. In particular, he traverses all the
actions in A/𝑎∗ and obtains the minimal reward score from 𝑒𝑛𝑣 . If
this score is larger than a given threshold 𝜓 and the variance of
𝑃 is smaller than 𝜖 , then 𝑠 is damage-free and (𝑠, 𝑃 ) will be added
to the watermark candidate sequence 𝑇𝑊 . Otherwise, he needs
to roll back and start from a new initial state (Line 2). With the
above procedure, the owner is able to get a dataset C that contains
multiple watermark candidate sequences.

4.2 Watermark Embedding
Given the identified set C of watermark candidates, the next goal
is to embed them into the target DRL model𝑀 . We design a novel
algorithm,Mark, to achieve this goal with functionality-preserving
and high robustness. The key insight of our algorithm is to encour-
age the model to predict different actions (or at least with different
APDs) on the damage-free states in these watermark candidates.
This can be used for both deterministic and stochastic DRL policies.

Let 𝑠, 𝑃 be a damage-free state and the corresponding APD in
𝑇𝑊 ∈ C, and 𝑎∗ be the action the agent will select with the highest
probability. We aim to fine-tune the model 𝑀 to learn a different
APD 𝑃 by encouraging it to select a different action 𝑎 randomly
sampled from A/𝑎∗. To this end, we introduce a novel reward func-
tion that adds an incentive reward on the original one over the
1We consider the case that the model owner has a clean model and wants to implant
watermarks to it. If the model owner wants to train a watermarked model from scratch,
he can first train a clean model and then follow our algorithms.
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Algorithm 1: WMGen: Generating (𝜖,𝜓 ) damage-free
temporal watermark candidates.
Input: Clean DRL model𝑀 , environment 𝑒𝑛𝑣 , candidate

number 𝑛, length 𝐿

1 C← ∅;
2 while |C| < 𝑛 do
3 𝑇𝑊 ← ∅;
4 Randomly sample 𝑠 ∈ S and 𝑒𝑛𝑣 .reset(𝑠);
5 while current episode is not finished do
6 𝑃 ←𝑀 .action_prob(𝑠) and 𝑎∗ ←𝑚𝑎𝑥𝑎 (𝑃) ;
7 if |𝑇𝑊 | < 𝐿 then
8 𝑠𝑐𝑜𝑟𝑒 ← the minimal score of the episodes that

traverse all 𝑎 ∈ A/𝑎∗ ;
9 if 𝑠𝑐𝑜𝑟𝑒 > 𝜓 and Var(𝑃 ) < 𝜖 then
10 𝑇𝑊 .add((𝑠 , 𝑃 ) ) ;
11 else
12 goto Line 2;
13 𝑎 ← sample an action following 𝑃 ;
14 𝑠 ← 𝑒𝑛𝑣 .step(𝑎);
15 C.add(𝑇𝑊 ) ;
16 return C

damage-free states. Formally, let 𝑟 (𝑠, 𝑎) be the original reward func-
tion. For a damage-free state 𝑠 ∈ 𝑇𝑊 , our new reward function
𝑟𝑒 (𝑠, 𝑎) returns the sum of the original reward with an additional
incentive reward 𝜂:

𝑟𝑒 (𝑠, 𝑎) =
{
𝑟 (𝑠, 𝑎) + 𝜂, 𝑠 ∈ 𝑇𝑊 and 𝑎 = 𝑎

𝑟 (𝑠, 𝑎), others.
(5)

We choose common loss functions 𝐿(𝑠) to fine-tune the model,
where the reward function is replaced with our new one. For sto-
chastic DRL policies (e.g., REINFORCE [29]), we use the following
loss function to train the model:

𝐿(𝑠) = cross_entropy_loss(𝑀 (𝑠), 𝑎)𝐺 (𝑠) (6)
𝐺 (𝑠) = 𝑟𝑒 (𝑠, 𝑎) + 𝛾𝐺 (𝑠 ′) (7)

where 𝐺 (𝑠) is the accumulative reward with a discount factor 𝛾 of
all the rewards from previous episodes, and 𝑠 ′ is the next state.

For deterministic policies (e.g., DQN [17]) which simply output
the most-likely actions instead of statistically sampling actions
based on the APD, we adopt the loss function with the temporal
difference (TD) error [25]:

𝐿(𝑠, 𝑎) =
(
𝑟𝑒 (𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄 (𝑠 ′, 𝑎′) −𝑄 (𝑠, 𝑎)

)2
. (8)

where 𝑄 (𝑠, 𝑎) is the value function to estimate the goodness of 𝑎
on 𝑠 , and 𝑠 ′, 𝑎′ are the next state and the corresponding action.

The model owner can optimize the parameters of 𝑀 with this
new loss function and the damage-free states using the stochastic
gradient descent technique:

𝜃𝑡+1 = 𝜃𝑡 − 𝑙𝑟∇
𝑇−1∑
𝑗=0

𝐿(𝑠 𝑗 ) (9)

Algorithm 2: Mark: Embedding watermarks into the DRL
model𝑀 .
Input: Environment 𝑒𝑛𝑣 , watermark candidates C, length 𝑇 ,

reward threshold 𝑅
1 Initialize the DRL model𝑀 and the training buffer B← ∅ ;
2 for 𝑠, 𝑃 ∈ C do
3 𝑎 ← sample a random action in A/𝑎∗;
4 �̂� ← 𝑟𝑒 (𝑠, 𝑎);
5 B.𝑎𝑑𝑑 (𝑠, 𝑎, �̂� )
6 for each seed ∈ S do
7 while current episode is not finished do
8 𝑎 ← sample an action following 𝑃 ;
9 𝑠, 𝑟 ← 𝑒𝑛𝑣 .𝑠𝑡𝑒𝑝 (𝑎);

10 if 𝑠 ∉ C then
11 B.add(𝑠, 𝑎, 𝑟 );
12 𝜃𝑀 ← 𝜃𝑀 − 𝑙𝑟∇

∑
𝐿(𝑠) ;

13 if 𝑒𝑣𝑎𝑙 (𝑀) ≥ 𝑅 then
14 𝑀 ← 𝑀 ;
15 goto Line 6 ;
16 for each 𝑇𝑊 ∈ C do
17 𝑠 ← the first damage-free state of 𝑇𝑊 ;
18 𝑇𝑊 ← ∅;
19 while |𝑇𝑊 | ≤ 𝑇 do
20 𝑃 ← 𝑀 .action_prob(𝑠) ;
21 𝑇𝑊 .add((𝑠 , 𝑃 )) ;
22 𝑠 ← 𝑒𝑛𝑣 .step(max𝑎(𝑃 )) ;
23 W.add(𝑇𝑊 ) ;
24 return𝑀 ,W

where 𝜃𝑡 is the parameters of𝑀 at the 𝑡-th iteration, and 𝑙𝑟 is the
learning rate. The optimization process ends when the reward𝑀

achieved on a validation dataset is larger than a given threshold 𝑅.
After the fine-tuning process, the behaviors of the target model

on the damage-free states will be altered, and the new APDs will
be different from the original ones in the watermark candidates C.
To identify the final watermarks, the model owner queries the fine-
tuned model𝑀 from the initial damage-free states in C, and record
the new state-APD sequences. For each initial state, he collects
the subsequent states and the corresponding action probability
distributions. Finally he can obtain a temporal sequence 𝑇𝑊 =

[(𝑠0, 𝑃0), (𝑠1, 𝑃1), ..., 𝑠𝐿−1, 𝑃𝐿−1)] that forms a unique watermark for
this new model.

Algorithm 2 illustrates the details of embedding watermarks
into a DRL model via fine-tuning. The owner first initializes the
DRL model 𝑀 and empties a training buffer B (Line 1). For each
damage-free state 𝑠 ∈ C, he randomly samples an action different
from the most-likely one 𝑎∗ and replaces the original reward 𝑟 (𝑠, 𝑎)
with the new reward 𝑟𝑒 (𝑠, 𝑎) (Lines 2 - 5). Then he adds the new
training samples intoB. During the optimization process, the owner
collects samples from B, computes the loss with Equation 6 or 8 and
updates𝑀 with the stochastic gradient descent technique (Lines 7 -
15). After the watermarked model𝑀 is obtained, the owner runs
it from the same initial damage-free states in 𝑇𝑊 , and collects the
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Algorithm 3: Verify: extracting the embedded water-
marks from a suspicious DRL model𝑀 ′.
Input: Watermark datasetW, distance threshold 𝜏

1 for each 𝑇𝑊 ∈ W do
2 for each of (𝑠𝑖 , 𝑃𝑖 )𝐿−1𝑖=0 ∈ 𝑇𝑊 do
3 Run the agent on 𝑠𝑖 and calculate the APD 𝑃 ′

𝑖
;

4 𝑑𝑠𝑖 ←
∑
𝑎 𝑝𝑖,𝑎 log

𝑝𝑖,𝑎
𝑝′
𝑖,𝑎
;

5 𝑑
𝑇𝑊 ,𝑇𝑊 ′ ←

∑𝐿
𝑖=0 𝑑𝑠𝑖 ;

6 𝑑
𝑀,𝑀′ ←

1
|𝑛 |

∑
𝑇𝑊 ∈W 𝑑

𝑇𝑊 ,𝑇𝑊 ′ ;
7 if 𝑑

𝑀,𝑀′ ≤ 𝜏 then
8 𝐼𝑠𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘𝑒𝑑 = True ;
9 else
10 𝐼𝑠𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘𝑒𝑑 = False ;
11 return 𝐼𝑠𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘𝑒𝑑

altered APDs. The pairs of states and new APDs are added to the
final watermark sequence 𝑇𝑊 (Lines 16 - 23).

4.3 Ownership Verification
The owner extracts the watermarks by running the agent on the
watermark states, observing the subsequent state-APD pairs and
checking whether the behaviors match the temporal watermark
𝑇𝑊 . Algorithm 3 describes this process. Due to the stochastic prop-
erty of a DRL agent, for each watermark state in 𝑇𝑊 , the action
can vary following the corresponding APD. To obtain the statistical
characteristics of the agent on a watermark state 𝑠 , the owner can
run the agent over 𝑠 for multiple times, collect the predicted actions
and calculate their probability distribution. Thus, the owner is able
to get the temporal sequence 𝑇𝑊 ′ = [(𝑠0, 𝑃 ′0), ..., (𝑠𝐿−1, 𝑃

′
𝐿−1)].

The owner calculates the distance between 𝑇𝑊 and 𝑇𝑊 ′ for
similarity comparison. Since the states are the same, the owner only
needs to compare the distance of APDs between the two sequences.
We adopt Kullback–Leibler (KL) divergence [14] to estimate such
distance of two distributions 𝑃𝑖 and 𝑃 ′𝑖 , as shown below:

𝑑𝑠𝑖 =
∑
𝑎

𝑝𝑖,𝑎 log
𝑝𝑖,𝑎

𝑝 ′
𝑖,𝑎

, (10)

where 𝑝𝑖,𝑎, 𝑝
′
𝑖,𝑎

are the probability of the action 𝑎 following the
distributions 𝑃𝑖 , 𝑃 ′𝑖 , respectively.

We define the distance 𝑑
𝑇𝑊 ,𝑇𝑊 ′ between 𝑇𝑊 and 𝑇𝑊 ′ as the

cumulative distance of all the action probabilities (i.e., 𝑑
𝑇𝑊 ,𝑇𝑊 ′ =∑𝐿−1

𝑖=0 𝑑𝑠𝑖 ). Thus, the distance 𝑑𝑀,𝑀′ of the watermarked model 𝑀
and the candidate model𝑀 ′ can be defined as the average distance
of all watermarks inW, i.e.,

𝑑
𝑀,𝑀′ =

1
𝑛

∑
𝑇𝑊 ∈W

𝑑
𝑇𝑊 ,𝑇𝑊 ′ =

1
𝑛

∑
𝑇𝑊 ∈W

𝐿−1∑
𝑖=0

𝑑𝑠𝑖 . (11)

The owner can verify the existence of watermarks by comparing
𝑑
𝑀,𝑀′ with a distance threshold 𝜏 .

5 EXPERIMENTS
We evaluate the requirements satisfactory of our method. It is
general for various types of DRL algorithms and tasks. Without
loss of generality, we consider the following two systems.
Stochastic policy. We implement a REINFORCE [29] DRL algo-
rithm to solve the Cart-Pole task [4]. It consists of two layers with
128 neurons. We apply dropout on the first layer with a rate of 0.6.
We also adopt the Relu activation function on the first layer, and
the softmax function on the last layer.
Deterministic policy We choose DQN [17] as a representative of
deterministic algorithms to solve the LunarLander task [4]. We ap-
ply the double DQN network structure and both the policy network
and target network have two layers of 32 neurons.

5.1 Effectiveness of Watermark Generation
and Embedding

Cart-Pole.To generate awatermark candidate, we randomly search
damage-free states from S. For each state, we enquiry the APD from
a clean model and identify the action 𝑎∗ which has the highest ac-
tion probability. Then we select an action 𝑎 different from 𝑎∗. Since
the Cart-Pole environment has a very small action space, i.e., 2
actions, if we always select the opposite action on all the incoming
𝐿 states, the system will be fragile and we can never obtain a se-
quence consisting of all damage-free states. Therefore, we perturb
the actions on alternative states with a fixed interval to mitigate
the impact on the tasks with small action spaces. More preciously,
we choose to change the action on every two states in the Cart-Pole
environment and collect the damage-free states as our watermark
candidates. We fix the threshold of variance𝜓 at 0.15 and set the
episode performance threshold 𝜖 to 195 following OpenAI Gym [4].

To embedwatermarks into the target model, we need to add an in-
centive reward (10 in our experiments) over the damage-free states
fromC and update the network parameters based on the correspond-
ing loss values. Since the network is trained over multiple episodes
initialized from random seeds, to ensure the damage-free states can
be included during the optimization of network parameters, we
initialize the environment with a seed that contains damage-free
states every 10 episodes. We add the incentive reward to every two
states in the episodes. We complete the training process when the
performance reaches the origin task reward threshold 𝜖 , and collect
the watermark sequence with a length of 6 from the new model.
LunarLander.We use the deterministic DQN algorithm to solve
this task. Therefore, the action probability on a state is either 1
(the selected one) or 0 (others). We first find a set of watermark
candidates consisting of damage-free states following the same
process in Cart-Pole.

For each watermark candidate, we modify the reward of the
damage-free states towards an non-optimal action and add the train-
ing sample to the training buffer. Different from training stochastic
models in Cart-Pole, DQN applies a experience replay mechanic
to sample the training data randomly. To guarantee the training
samples with our revised rewards can be learned well by the net-
work, we adopt the prioritized experience replay [21] to sample
the training data which have large loss with higher probability. We
initialize the experience buffer with a size of 10000 and start to train
the DQN model with normal process.
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Table 1: Verification results of the embedded watermarks

Metric
Cart-Pole LunarLander

Train Fine-tune Train Fine-tune
Accuracy 96.7% 95% 100% 100%
Error rate 4.2% 5.8% 1.6% 2.5%

5.2 Verification Results
We evaluate whether the generated watermarks can be observed
to identify models in this section. We use two metrics to quantify
the effectiveness of the embedded watermark in a DRL model: the
verification accuracy denotes the ratio of watermarked models that
can be correctly detected; the error rate denotes the percentage of
unprotected models that are misclassified as the watermarked one.

For the Cart-Pole case, we produce 20 watermarked models and
120 clean models for classification. The clean model set consists
of 20 original REINFORCE models before watermarking, 20 new
REINFORCE models, 40 PPO models and 40 A2C models. PPO and
A2C models are trained with the default network structure based
on the benchmark of OpenAI baseline [8]. To increase the diversity
of the model set, we vary the hyperparameters (e.g., learning rates,
training steps) to generate those 80 clean models. For the Lundar-
Lander, we produce 20 watermarked models and 80 clean models for
classification. All the clean models are based on DQN with varied
hyperparameters from the benchmark of OpenAI baseline [8].

During verification, we send the first watermark state to each
model and collect 10000 actions to analyze the APD. If the model
cannot reach the next watermark state, we stop this process and
treat this model as a non-watermarked one, as its APD is very
different from the expected one. Otherwise, we compute the KL
divergence of the collected APD and the watermark APD.We repeat
the above process and compute the average distance until we reach
the end of the watermark sequence. We set the average distance
threshold 𝜏 to 0.5.

Table 1 shows the verification results for these two tasks. We
consider two embedding modes: (1) Train is to train a watermarked
model from scratch; (2) Fine-tune means to embed watermarks to
a well-trained model via fine-tuning. From this figure, we observe
that our method can achieve very high accuracy for both environ-
ments (96.7% for Cart-Pole and 100% for LunarLander). Meanwhile,
the error rates can be kept to very small values. This confirms the
effectiveness of our approach. It is interesting to note that the verifi-
cation performance of Cart-Pole is slightly worse than Lunarlander.
The reason is that the stochastic models act randomly following the
APD, and we can only analyze an approximate distribution during
the verification under the black-box access setting. Therefore, there
may exist measurement errors to decrease the accuracy.

5.3 Functionality-preserving
Another requirement for the watermark scheme is functionality-
preserving, where the added watermarks should not affect the per-
formance and behaviors of the model on normal states. To quantify
this requirement, we compare the original clean model and the

(a) Train to Embed on Cart-Pole (b) Train to Embed on LunarLander

Figure 3: The episode rewards during the progress of train-
ing clean and watermarked models.

(a) Fine-tune to embed on Cart-Pole (b) Impact of fine-tuning on Cart-Pole

Figure 4: The episode rewards during the progress of fine-
tuning watermark embedding and transformation.

watermarked model from the perspectives of the learning progress,
the average and variance of episode scores.

We profile the training progress of 20 clean models and 20 wa-
termarked models. Figure 3 shows the range of episode rewards
when training with and without watermarks for both stochastic
and deterministic models. The progress of training a watermarked
model is slightly slower than training a clean model. The variance is
also kept within an acceptable range considering the high stochas-
ticity of DRL algorithms. For the fine-tuning embedding mode, the
stochastic models have less stable behaviors than the deterministic
ones, as they need to randomly collect the training experience with
the actions sampled following the APD. As shown in Figure 4(a),
the fine-tune progress of Cart-Pole has large variance but it can
still acquire the knowledge to solve the task and memorize the
watermarks.

Table 2 shows the average and variance of episode scores for
watermarked models under two embedding modes. For each wa-
termarked model, we measure its performance over 100 episodes
initialized with random seeds. From this table, we observe the aver-
age episode score can meet the threshold (reported in the Threshold
row) for solving each task. The small variance also indicates that the
watermarked models are very stable with embedded watermarks.

5.4 Robustness
The adversary may try to transform a stolen model in order to either
adapt to his datasets and scenario, or maliciously hide the evidence
of plagiarism. So the watermarks should not be removed by those
transformations. There are mainly two types of model transforma-
tions: fine-tuning and model compression [11, 23]. We demonstrate
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Table 2: Functionality-preserving results of the water-
marked models

Score
Cart-Pole LunarLander

Train Fine-tune Train Fine-tune

Threshold 195 195 200 200
Average 197.6 196.2 201.6 200.8
Variance 4.59 9.26 14.50 18.42

that our watermarks can resist against these two operations. This
is not considered in prior work [3].

Fine-tuning is a commonmethod to apply awell-trainedmodel to
a similar task with less effort. In our experiments, we fine-tune the
watermarked model with the same implementation and hyperpa-
rameters. For the LunarLander case, we fine-tune the watermarked
model with 100 episodes (around 10% of episodes for training a new
model from scratch). For the Cart-Pole case, we fine-tune the model
with 50 episodes. The reason that we select a smaller number of
episodes is based on the observation that extensive fine-tuning can
hurt the performance of the stochastic models as the new training
experiences are sampled following the APD. This is validated by
Figure 4(b), which shows the reward range with different numbers
of fine-tuning episodes. To preserve the model’s functionality, it is
reasonable for the adversary to choose 50 episodes.

Model compression is another popular solution to reduce the
model size and complexity. There are various ways to compress the
model. We apply model quantization [12] to reduce the precision of
parameters in the target model. In our experiments, we train DRL
models with 32-bit floating point tensors, and then compress the
parameters to 16-bit floating point tensors.

Table 3 shows the robustness results against these two trans-
formations. We observe that fine-tuning transformation is slightly
worse than compression, especially for the stochastic case (Cart-
Pole). However, the watermarked models under all these settings
can still maintain high verification accuracy to be detected.

6 DISCUSSION
Extensibility to various environments. Different from conven-
tional DNNs, watermarking DRL models is more dependent on the
environments and tasks. As such, designing a uniform scheme for
all DRL tasks is very difficult. Our paper made the first attempt to ad-
dress this challenge, and evaluations indicate our solution is useful
for common DRL tasks. In some applications (e.g., POMDP [5]), full
information about states and actions is not easy to acquire. To adapt
to this case, we can just select the observable states and actions as
watermarks, while abandoning the hidden ones. We can also use
more watermark sequences to increase the fidelity. As future work,
we will evaluate our solution for more DRL applications.
Selection of hyperparameters. There are several hyperparame-
ters in our approach that can affect the performance of the water-
mark embedding and verification. Since different tasks have distinct
features, the model owner needs to empirically test his models to
identify the optimal thresholds. He can systematically set the thresh-
olds following the method as we did: 1) set the variance 𝜖 inversely

Table 3: Robustness results of the watermarked models
against different transformations

Transformation
Cart-Pole LunarLander

Train Fine-tune Train Fine-tune

Baseline 96.7% 95% 100% 100%
Fine-tune 95% 83% 96.7% 93.3%

Compression 91.5% 89.2% 98.3% 95.8%

proportional to the action space size; 2) set the incentive reward
𝜂 as 5-20 times of the original one; 3) set the average distance 𝜏
to be inversely proportional to the incentive reward. Following
these basic rules, we can find the “sweet-spots” for a specific task
by tuning these hyperparameters properly.
More watermark removal attacks. In this paper we evaluate the
robustness of our watermarking scheme against fine-tuning and
model quantization. There are other common model transforma-
tion techniques for neural networks, e.g., model distillation, model
pruning, etc. Model distillation requires large training data and
huge computational resources, which is not a practical solution for
watermark removal attacks. Model pruning and model quantization
with larger compression ratios (e.g., reducing to 8 bit or binary
weights) can lead to an unacceptable performance penalty to the
model. These can discourage the adversary from performing such
model transformations. In our future work, we plan to study more
efficient and sophisticated attacks to remove DRL watermarks.

7 CONCLUSION
In this paper, we explore how to protect the intellectual property,
and prevent copyright infringements of DRL models. We formally
define the watermarking problem and requirements for DRL. We
propose a novel temporal watermarking scheme that can be ap-
plied to both deterministic and stochastic DRL policies. Instead
of using spatial triggers or perturbations, or out-of-distribution
states in different environments as watermark states, we design
damage-free states, and utilize statistic tests of action probability
distribution to verify the ownership of the target model with only
black-box accesses. This strategy can effectively make the water-
marked models uniquely distinguishable, while preserving their
behaviors and performance for normal usage. Extensive experi-
mental results reveal that our watermarking scheme can satisfy
the functionality-preserving, state-preserving, and damage-free
requirements under different environments and system settings.
Our watermarks are also robust to common model modification
techniques such as fine-tuning and compression.
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