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Abstract

Decision-making problems, categorized as single-
agent, e.g., Atari, cooperative multi-agent, e.g.,
Hanabi, competitive multi-agent, e.g., Hold’em
poker, and mixed cooperative and competitive,
e.g., football, are ubiquitous in the real world. Al-
though various methods have been proposed to
address the specific decision-making categories,
these methods typically evolve independently and
cannot generalize to other categories. Therefore,
a fundamental question for decision-making is:
Can we develop a single algorithm to tackle ALL
categories of decision-making problems? There
are several main challenges to address this ques-
tion: i) different categories involve different num-
bers of agents and different relationships between
agents, ii) different categories have different so-
lution concepts and evaluation measures, and iii)
there lacks a comprehensive benchmark covering
all the categories. This work presents a prelim-
inary attempt to address the question with three
main contributions. i) We propose the general-
ized mirror descent (GMD), a generalization of
MD variants, which considers multiple historical
policies and works with a broader class of Breg-
man divergences. ii) We propose the configurable
mirror descent (CMD) where a meta-controller
is introduced to dynamically adjust the hyper-
parameters in GMD conditional on the evaluation
measures. iii) We construct the GAMEBENCH
with 15 academic-friendly games across differ-
ent decision-making categories. Extensive exper-
iments demonstrate that CMD achieves empiri-
cally competitive or better outcomes compared to
baselines while providing the capability of explor-
ing diverse dimensions of decision making.
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1. Introduction

Decision-making problems are pervasive in the real world
(Sutton & Barto, 2018; Shoham & Leyton-Brown, 2008),
which can be generally categorized into single-agent, e.g.,
Atari (Mnih et al., 2015), cooperative multi-agent, e.g.,
Hanabi game (Bard et al., 2020), competitive multi-agent,
e.g., Hold’em poker (Brown & Sandholm, 2018; 2019),
and mixed cooperative and competitive (MCC), e.g., foot-
ball (Kurach et al., 2020; Liu et al., 2022a). To solve these
problems, various methods are proposed where notable ex-
amples include PPO (Schulman et al., 2017) for single-agent
category, QMIX (Rashid et al., 2018) for cooperative multi-
agent category and PSRO (Lanctot et al., 2017) for competi-
tive category. Despite the successes in specific categories,
these methods are developed almost independently and can-
not generalize to other categories. Therefore, a fundamental
question for decision making to answer is:

Can we develop a single algorithm to tackle ALL

categories of decision-making problems?
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Figure 1. Overview of the categories of decision making and the
four desiderata for the required method to satisfy.

There are several critical challenges to address this funda-
mental question. First, the different categories of decision-
making problems include different numbers of agents and
different relationships between agents. There is one agent
for the single-agent category, while multiple agents for the
other three categories, therefore, the reinforcement learn-
ing methods, e.g., PPO, mainly developed for single-agent
decision-making problems, cannot be directly applied to
multi-agent categories. Furthermore, even for multi-agent
categories, QMIX (Rashid et al., 2018) is developed to han-
dle the cooperative multi-agent category and cannot be ap-
plied to the competitive category. Second, different decision-
making categories have different solution concepts, where
the optimal (joint) policy is considered in the single-agent
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and cooperative multi-agent categories, while for the com-
petitive and MCC multi-agent categories, Nash equilibrium
(NE) (Nash, 1951) is the canonical solution concept and
other solution concepts, e.g., correlated equilibrium (Au-
mann, 1987) are also considered. Furthermore, even for
one solution concept, e.g., NE, there are different evaluation
measures, e.g., NashConv or NashConv with social welfare
and fairness'. To summarize the challenges, we propose the
four desiderata that the methods should satisfy:

e D1: Applicable to single- and multi-agent categories
* D2: Applicable to coop., comp., & MCC categories
* D3: Applicable to different solution concepts

* D4: Applicable to different evaluation measures

An overall illustration of the categories of the decision
making and the desiderata is displayed in Figure 1. Third,
existing benchmarks are typically specialized for specific
decision-making categories, while a comprehensive bench-
mark that satisfies the following two desiderata is lacking.

* DS: (Comprehensive) It covers all categories
¢ D6: (Academic-friendly) It is less resource-intensive

In this work, we make a preliminary attempt to address these
challenges and provide three main contributions. i) We pro-
pose the generalized mirror descent (GMD), a generalization
of existing MD algorithms (Nemirovskij & Yudin, 1983;
Beck & Teboulle, 2003), which incorporates multiple histor-
ical policies into the policy updating and is able to explore
a broader class of Bregman divergence by addressing the
Karush—Kuhn-Tucker (KKT) conditions at each iteration.
As GMD is adopted by each agent independently, it can be
applied to different decision-making categories involving
different numbers of agents and different relationships be-
tween agents (D1 and D2). ii) We propose the configurable
mirror descent (CMD) by introducing a meta-controller to
dynamically adjust the hyper-parameters in GMD condi-
tional on the evaluation measures, allowing us to study dif-
ferent solution concepts as well as evaluation measures (D3
and D4), with minimal modifications. iii) We construct the
GAMEBENCH consisting of 15 games which cover all the
decision-making categories (D5) and are deliberately con-
structed with the principle that running algorithms on these
games does not require much computational resource (D6),
and hence, forming a comprehensive and academic-friendly
testbed for researchers to efficiently develop and test novel
algorithms. Extensive experiments on the GAMEBENCH
show that CMD achieves empirically competitive or better
outcomes compared to baselines while offering the ability
to investigate diverse dimensions of decision making.

"This is related to the equilibrium selection problem (Harsanyi
et al., 1988) and different measures lead to different equilibria.

2. A Real-World Motivating Scenario

We provide an illustrative example to highlight the impor-
tance and real-world implications of a unified algorithm
framework. Consider that a robotic company is developing
and selling generalist domestic robots to users. The user
may ask the robot to learn to complete different novel tasks,
including single-agent, cooperative, competitive, and MCC
categories, by specifying the objective. Therefore, if we can
deploy a unified algorithm into the robot, the robot can learn
to complete different novel tasks with a single algorithm.

Developing and deploying such a unified algorithm would
benefit both the development and users. For the develop-
ment side, as only a single policy learning rule is required,
the deployment and user interface design could be largely
simplified, which would be more cost-efficient than deploy-
ing different specialized algorithms such as MAPPO and
PSRO as they may complicate the development pipeline and
user interface design. For the user side, the user only needs
to configure one set of parameters for different novel tasks,
e.g., only needs to specify the optimization objective of the
meta-controller in our proposed CMD algorithm.

3. Related Work

The related literature is too vast to cover in its entirety. We
present an overview below to emphasize our contributions
while more related works can be found in Appendix B.

Decision Making. Substantial progress has been achieved
in developing algorithms to address different categories of
decision-making problems, e.g., DQN (Mnih et al., 2015)
and PPO (Schulman et al., 2017) for single-agent category,
QMIX (Rashid et al., 2018) and MAPPO (Yu et al., 2022) for
cooperative multi-agent category, self-play (Tesauro et al.,
1995) and PSRO (Lanctot et al., 2017) for competitive and
MCC categories, to name just a few. Despite the successes
in specific categories, these methods often cannot directly
generalize to different categories. In this work, we make a
preliminary attempt to develop a single algorithm capable of
tackling all categories of decision-making problems which
typically involve different numbers of agents, different re-
lationships between agents, different solution concepts as
well as different evaluation measures.

Mirror Descent. Mirror descent (MD) (Nemirovskij &
Yudin, 1983; Beck & Teboulle, 2003; Vural et al., 2022) has
shown effectiveness in learning optimal policies in single-
agent RL (Tomar et al., 2022) and proved the last-iterate con-
vergence in learning approximate equilibrium in zero-sum
games (Bailey & Piliouras, 2018; Kangarshahi et al., 2018;
Wibisono et al., 2022; Kozuno et al., 2021; Lee et al., 2021;
Jain et al., 2022; Ao et al., 2023; Liu et al., 2023; Cen et al.,
2023; Sokota et al., 2023) and some classes of general-sum
games, e.g., polymatrix and potential games (Anagnostides
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et al., 2022b). Despite the progress, existing works typically
focus on some specific Bregman divergence such as the KL
divergence. We relax this premise by addressing the KKT
conditions at each iteration, enabling us to explore a broader
class of Bregman divergence. Moreover, by introducing a
meta-controller to dynamically adjust the hyper-parameters,
our CMD can be applied to different solution concepts and
evaluation measures with minimal modifications.

Hyper-Parameter Tuning. Existing works typically de-
termine the hyper-parameter values of the MD algorithms
depending on domain knowledge (Sokota et al., 2023; Anag-
nostides et al., 2022b; Hsieh et al., 2021), which may not
be easy to generalize to different games. On the other hand,
gradient-based hyper-parameter tuning methods such as
STAC (Zahavy et al., 2020) are less applicable as the evalu-
ation measures, e.g., NashConv, could be non-differentiable
with respect to the hyper-parameters. To address the issue,
we propose a simple yet effective zero-order optimization
method where the performance difference between two can-
didates is used to only determine the update direction of the
hyper-parameters rather than the update magnitude, which
is more effective than existing methods (Wang et al., 2022)
when the value of the performance is extremely small.

4. Preliminaries

In this section, we first introduce the model of decision
making and the solution concepts and evaluation measures
considered in our work. Then, we present the classic mirror
descent algorithm (Beck & Teboulle, 2003).

4.1. Decision Making

POSG. A decision-making problem, either single-agent,
cooperative, competitive, or mixed cooperative and com-
petitive category, can be described as a partially observable
stochastic game (POSG) (Oliehoek & Amato, 2016) denoted
as (NS, A4,0,Q,P,R,v,v). N ={1,--- , N} is the set
of agents. S is the finite set of the states. A = X;cnrA; and
O = X;enO; where A; and O; are the finite set of actions
and observations of agent 4, respectively. Let a € A denote
the joint action of agents where a; € A; is agent ’s action.
Q = Xien; where Q; : S x A — O; is the observation
function specifying agent i’s observation o; € O; when all
agentstake a € Aatstates € S. P : S x A — A(S) is the
transition function which specifies the probability of transit-
ing to s’ € S when agents take a € A at state s € S. A(+)
denotes the simplex. R = {r;};cn wherer; : SxA — Ris
the reward function of agent i and ~y € [0, 1) is the discount
factor. v € A(S) denotes the distribution over initial states.
At time step ¢ > 0, each agent has an action-observation his-
tory (i.e., a decision point) 7/ € T;* where T = (O; x A;)*
and constructs its policy 7; : 7;" — A(A;) to maximize its
own return. Let II; denote the policy space of agent i, that is,

we have m; € II;. The joint policy of all agents is denoted
asmT =7 ®---Omy and 7w € II where IT denotes the joint
policy space of all agents. A special case of joint policy is
the product policy denoted as w = 71 X - - - X 7. Also, let
T_; =M1 O Ti_1Om41 - - - Omy denote the joint policy
of all agents except ¢. Given the initial state so = s, the
value function of agent i is V;(s, ) :== E[Y_,°  y'rl|s, 7]
where rf is the agent ¢’s reward at time ¢ > 0. Furthermore,
we have V; (v, ) .= Es, [Vi(s, )]

Solution Concepts. The policy of an agent is said to be
optimal if it is optimal in every decision point belonging to
the agent. In single-agent and cooperative categories, this
optimal policy maximizes the expected return for the agent
or the team. In multi-agent competitive and mixed coopera-
tive and competitive categories, we consider two common
equilibrium concepts: Nash equilibrium (NE) (Nash, 1951)
and coarse correlated equilibrium (CCE) (Moulin & Vial,
1978). Let 7; x w_; denote the product policy and m; ©® 7w_;
denote the joint policy. Then, 7w* is called an NE if for each
agent i it satisfies: Vrr, € II;, V; (v, 7*) > V;(v, 7l x w*)).
Similarly, 7w* is called a CCE if for each agent ¢ it satisfies:
vl e I, Vi(v,m*) > Vi(v, i © w*)).

Evaluation Measures. Let £(7r) denote measures used to
evaluate a (joint) policy 7. In single-agent and cooperative
categories, the measure is the distance of the (joint) policy
to the optimal (joint) policy 7*, which is defined as £(7) =
OptGap(w) = V(v,7*) — V (v, 7). In other categories, we
consider multiple evaluation measures. The first one is the
distance of the joint policy to the equilibrium (NE or CCE).
For NE, we refer to this distance as NashConv, and for
CCE, we refer to it as CCEGap, as is convention in previous
works (Lanctot et al., 2017; Marris et al., 2021). More
specifically, we have NashConv(7) = Y, [Vi(v, mBR x
m_;) — Vi(v,m)] and CCEGap(m) = >,y [Vi(v, 7BR ©
m_;)—Vi(v, )], where 7BR is the best response (BR) policy
of agent ¢ against all other agents. The second evaluation
measure we consider is the social welfare (SW) (Davis &
Whinston, 1962), denoted as L(m) = >, Vi(v, 7).

4.2. Mirror Descent

From a single agent’s perspective, the condition for the
optimal or equilibrium policy can be expressed by the fol-
lowing optimization problem at each decision point of the
agent (Tomar et al., 2022; Sokota et al., 2023): VTf S 7?,

7i(r}) = argmax]EaNm(Tit)Q(Tf, a,mOw"), (1)

i €ll;

where Q(7},a,m) = E[Y_;", ;¥ "rl|7!, al = a, ] is the
action-value function of the action a € A; at the decision
point 7}. Without loss of generality, we will only focus on
the policy learning of a single agent ¢ in a single decision
point 7} € 7' and henceforth, the index  and 7/ are ignored
as they are clear from the context, and with a slight abuse of
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Table 1. Comparison of different methods. *Note that MMD can be regarded as the method that can consider multiple previous policies
by setting the magnet policy to the initial policy (typically a uniform policy).

Method Multiple previous Working on any Working on any | Configurable for
policies Bregman divergence | solution concept any measure

MD (Nemirovskij & Yudin, 1983) X X X X

MMD* (Sokota et al., 2023) v X X X

GMD (This work) v v X X

CMD (This work) v v v v

notation, we denote 4 the action set .4; of agent i, m € I1
the agent’s policy, and Q(a) (or Q(a, 7)) the action-value
of the action a € A. Then, to learn the optimal or equi-
librium policy, we aim to solve the optimization problem:
7% = argmax e Eqwr@Q(a). A feasible method to solve
this problem is the mirror descent (MD), which takes the
form (Beck & Teboulle, 2003; Tomar et al., 2022):

Tpt1 = arg Maxyer(Q(me), 1) — aBy(m, mk), 2)

where 1 < k < K is the iteration, Q(m) is the action-
value vector induced by 7y, (for simplicity, we let Q () =
(Q(a, Tk))ae.A), « is the regularization intensity, By is the
Bregman divergence with respect to the mirror map ¢, de-
fined as By (x5 y) = d(x) — o(y) — (Vé(y),  —y) with (-)
being the standard inner product and z,y € A(A).

5. Configurable Mirror Descent

In this section, we propose a novel algorithm which sat-
isfies the four desiderata (D1-D4) presented in the Intro-
duction. First, we propose the generalized mirror descent
(GMD), a generalization of existing MD algorithms, which
when independently executed by each agent, can effectively
tackle different decision-making categories involving differ-
ent numbers of agents and different relationships between
agents (D1 and D2). Second, we propose the configurable
mirror descent (CMD) where a meta-controller is introduced
to dynamically adjust the hyper-parameters of GMD condi-
tional on the evaluation measures, which can be configured
to account for different solution concepts as well as evalu-
ation measures (D3 and D4), with minimal modifications.
CMD shares similarities with the centralized training and
decentralized execution (CTDE) (Lowe et al., 2017) since
the meta-controller considers all agents to optimize the tar-
geted evaluation measures (“centralized” training from the
controller’s perspective) while GMD is executed by each
agent independently (“decentralized” execution from each
agent’s perspective). The overview of CMD is shown in
Figure 2 and Table 1 presents a comparison to more clearly
position our methods in the context of related literature.

Meta-Controller (MC)

Heeo_
update evaluate

__________________________________________

QN —1

{
:
1
Tk—M+1
(e
1
1
1
1

Generalized Mirror Descent (GMD)

Figure 2. Overview of CMD.

5.1. Generalized Mirror Descent

Though existing MD algorithms, e.g., Eq. (2), can be also
executed by each agent independently, they could not gen-
eralize well to satisfy the desiderata D1 and D2. The main
reasons are two-fold. First, classic MD algorithms (Beck &
Teboulle, 2003; Tomar et al., 2022) typically only consider
the current policy when deriving the new policy at each itera-
tion. However, it has been shown that incorporating multiple
previous policies (e.g., the initial and current policies) could
be powerful in solving two-player zero-sum games (Sokota
et al., 2023; Liu et al., 2023). Second, even though multiple
previous policies are considered, existing MD algorithms
typically focus on some specific Bregman divergences by
restricting ¢ to certain convex functions which may not be
the optimal choices across different decision-making cat-
egories. To address these challenges, we propose a more
general MD method satisfying the desiderata D1 and D2.

A General MD Method. We propose a more general MD
approach which takes multiple historical policies into ac-
count when deriving the new policy, as given below:

M-—1
aTB¢(7T7 7Tk‘—7')7

Te+1 = argmax(Q(my), ) — Z

well 7=0

s.t. ZaEA m(a) = 1and mi(a) > 0,Va € A, 3)
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where M > 1 is the number of historical policies, o, €
(0, 1] is the regularization intensity of 7,0 < 7 < M —1,
and let o = (a; )o<r<nr—1. Note that solving the problem
(3) to derive the policy updating rule could be challenging.
In practice, the problem could have a closed-form solution
only in certain settings such as the convex function ¢ is the
negative entropy and the constraints are removed (i.e., the
unconstrained domains (Sokota et al., 2023)). To address
this issue, we propose a novel method to solve the problem
(3), which does not rely on the availability of the closed-
form solution and hence, can consider more possible options
of ¢. To this end, first, we have the following result:

Proposition 5.1. Assume that i) m(a) > €, Va € A, where €
is a small positive value and ii) the ¢() defined on 11 can be
decomposed to* ¢(m) = Y. 4 (w(a)) where 1) is some
convex function defined on [0, 1]. Then, solving the problem
(3) can be converted to solve the following equation:

D@ =2 W (Ale)=N/B) =1, 4

where A = Q (i) + Z]T\Sl a, ¢ (mgp—r), B= Zigl o,
X is the dual variable, |~ is the inverse function of V' (the
derivative of 1), and 7w(a) = ¢'~* (A(a) — \)/B).

This result is obtained via the Karush—Kuhn-Tucker (KKT)
conditions of the Lagrange function obtained by applying
the Lagrange multiplier A (i.e., the dual variable) to the prob-
lem (3). The full derivation can be found in Appendix D.1.

Numerical Method for Computing \. Now we need to
solve Eq. (4) to obtain the value of A. Unfortunately, this
typically cannot be solved analytically, rendering it less
possible to derive the policy updating rule without the avail-
ability of the closed-form solution. To address this issue, we
use the Newton method (Ypma, 1995) to compute the value
of A\: repeatedly executing A = A — g(A) /¢’ () for C > 0
iterations, where g(\) = [, . 4 ¥/ " (A(a) — A)/B)] -1,
) = Soea— 51 T(Aa) ~ 2)/B). and [p-1) is
the derivative of 1)'~!. The pseudo-code can be found in
Algorithm 3 in Appendix D.1.

Projection Operation. After computing the value of A\, we
can get the policy 7(a) by substituting it into the expression
of 7(a) as presented in Eq. (4). Furthermore, we employ a
projection operation to ensure that 7(a) > €. Specifically,

we have: Va € A, mp41(a) = > /re“j’;g;f{(é‘fzr}(a,)}.

Different Bregman Divergences. In addition to taking mul-
tiple historical policies into consideration, GMD? further
generalizes existing MD algorithms with the capability of

2The sum of convex functions is still a convex function. Further-
more, the negative entropy and squared Euclidean norm are two
special variants that have been extensively adopted in literature.

3The term GMD is also used in (Radhakrishnan et al., 2020),
which differs from our method.

exploring a broader class of Bregman divergence as, via the
numerical method to compute the value of ), it is capable of
taking more possible convex functions into account. Table 2
presents the functions considered in our work. See (Boyd &
Vandenberghe, 2004) for more examples. z? (i.e., n = 2)
and x In x respectively correspond to the Euclidean norm
and entropy. More details can be found in Appendix D.1.

Table 2. List of convex functions and related functions, z € (0, 1].

P(z) | Y(x) ' (x) [ ()
N 2o
S I ) S <G
zlnz ‘ Inz+1 er—1 er—1
—z", n-1 (zzyaiy 1 (—xz)3=%
0<n<1_naj (n) ! l—n(n)
e k>0 | ket In(x/k)/k 1

GMD Summary. The pseudo-code of GMD is provided in
Algorithm 1. Compared to existing MD algorithms, GMD
could satisfy well the desiderata D1 and D2 as it not only
takes multiple previous policies into account but is also ca-
pable of leveraging more possible Bregman divergences that
may be better than existing choices such as KL divergence
across different decision-making categories.

Algorithm 1 Generalized Mirror Descent (GMD)
1: Given %, initial policy 71, M, x, €
2. fork=1,--- , K do
3:  Compute A and B with 7 and «
4 Compute A via Newton method (Algorithm 3)
5 Compute 7(a) = ¢'"1(A(a) — \)/B),Va € A
6:  Compute 7,41 (a) via projection operation, Va € A
7: end for

5.2. Meta-Controller for Different Measures

While GMD can satisfy the desiderata D1 and D2, it cannot
satisfy well the last two desiderata D3 and D4. The pri-
mary reason is that when each agent independently executes
GMD, it is not immediately feasible to investigate different
solution concepts and evaluation measures as no explicit
objective regarding the different measures arises in such a
“decentralized” execution process (different measures could
lead to different solution concepts and henceforth, we will
only focus on the different measures). To address this prob-
lem, we propose the configurable mirror descent (CMD)
by introducing a meta-controller (MC) to adjust the hyper-
parameters in GMD conditional on the evaluation measures,
which is a “centralized” process from the meta-controller’s
perspective as it considers all the agents (joint policy) to
optimize the targeted evaluation measure (and hence, the
targeted solution concept), i.e., D3 and D4.
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Zero-Order Meta-Controller. As shown in Eq. (3), given
the number of historical policies M > 1, the only control-
lable variable is the hyper-parameters o = (o )o<r<mr—1-
At the iteration k, let 7 = GMD(«x)* denote the joint policy
derived from the previous joint policy m; by using GMD
with the given «, and the performance of this joint policy is
denoted as £(7). Notably, optimizing c, unfortunately, is
non-trivial as the evaluation measure £ is non-differentiable
with respect to c. To address this issue, we construct an ef-
ficient zero-order MC by leveraging a zero-order method to
optimize c. As shown in Figure 2, MC updates o through
three steps: i) it samples D candidates {a’ }le by perturb-
ing the current o and then derives D new joint policies
{n7 = GMD(a?)} 2., by employing GMD, ii) it evaluates
these new joint policies {£(m/ )}jD:l, and iii) it updates o
based on the performance of these new joint policies.

Direction-Guided Update. Let o' and o denote the two
candidates sampled by perturbing the current o and the
corresponding joint policies 7! and 72 are obtained via
GMD. Existing zero-order methods such as the random
search (RS) (Liu et al., 2020) typically update the o directly
based on the performance difference between the two can-
didates 6 = L(w!) — £(m?), which could be ineffective
as the value of £ could be too small (as shown in our ex-
periments) to derive an effective update. To address this
problem, we propose to update o« based on the sign of the
performance difference. Precisely, § only determines the
update direction, not the update magnitude, which is more
effective when the value of £ is too small. We call this
simple yet effective technique the direction-guided update.
In our experiments, we construct an MC — direction-guided
random search (DRS) — by applying this method to the exist-
ing RS (Wang et al., 2022). More details on different MCs
can be found in Appendix D.4.

Algorithm 2 Configurable Mirror Descent (CMD)
1: Given L, 1, initial (joint) policy 71, M, D, €
2:. fork=1,--- ,Kdo
3:  Sample D candidates {a/}.

4:  Derive new joint policies {7/ = GMD(a)}2_,
5:  Evaluate new joint policies {£ () ]DZI

6:  Update o based on {£(77)} 2,

7.  Compute 71 via GMD with the updated o

8: end for

CMD Summary. By incorporating the MC into GMD, we
establish the CMD. Intuitively, CMD can be configured to
apply to different evaluation measures and hence, can satisfy
the desiderata D3 and D4 while only minimal modifications
are required: specifying the MC’s optimization objective L.
The pseudo-code of CMD is shown in Algorithm 2.

“a is applied to all the agents in multi-agent categories.

6. GAMEBENCH

In this section, we present the GAMEBENCH, a novel bench-
mark which consists of 15 games covering all categories of
decision making and includes different evaluation measures
and different algorithms, which is shown in Figure 3.

E Mirror Descent CFR

= CMD | GMD | MMD | MD CFR | CFR+

£

En This This (Sokota (Nemirovskij & (Zinkevich | (Tammelin,

< work work etal, 2023) | Yudin, 1983) etal., 2007) 2014)

g Optimality Equilibria

lé OptGap ‘ Social Walfare NashConv ‘ CCEGap

S
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Figure 3. Overview of GAMEBENCH.

Motivation. Although various benchmarks have been sug-
gested in literature, they are typically specialized for spe-
cific decision-making categories, e.g., Atari (Bellemare
et al., 2013) for single-agent category, Hanabi (Bard et al.,
2020) for cooperative category, Hold’em poker (Brown &
Sandholm, 2018; 2019) for competitive category, and foot-
ball (Kurach et al., 2020) for mixed cooperative and compet-
itive category. On the other hand, as MD algorithms require
to execute the policy updating at each decision point at each
iteration, running them on the existing benchmarks could be
resource-intensive as the number of decision points in the
environments could be extremely large (e.g., it is impractical
to enumerate the observations in Atari as they are images).

Desiderata. Motivated by the above facts, we construct a
new benchmark — GAMEBENCH. It satisfies the two desider-
ata D5 and D6 presented in the Introduction. That is, it cov-
ers all categories of decision-making problems (comprehen-
sive), and running MD algorithms (or other algorithms such
as CFR (Zinkevich et al., 2007)) on all the games does not
require much computational resource (academic-friendly).
The components of GAMEBENCH are given below.

Games. We curate the GAMEBENCH on top of the Open-
Spiel (Lanctot et al., 2019). There are 15 games which are
divided into 5 categories: single-agent, cooperative multi-
agent, competitive multi-agent zero-sum, competitive multi-
agent general-sum, and mixed cooperative and competitive
(MCC) categories. In our GAMEBENCH, the original com-
petitive category is further divided into two subcategories —
zero-sum and general-sum — as they can involve different
solution concepts and evaluation measures (given below).
We construct all 15 games under two primary principles: 1)
these games involve as many aspects of decision making as
possible, e.g., the number of agents (single or multiple) and
the relationship between agents (cooperative, competitive,
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Figure 4. Summary of results. The first 6 figures correspond to single-agent and cooperative categories where the y-axis is OptGap. The
rest figures correspond to other categories where the y-axis is NashCony. For all the figures, the x-axis is the number of iterations.

or mixed), and ii) these games are relatively simple, have
a low barrier to entry, and yet complex enough, and hence,
running algorithms on these games is less resource-intensive.
The details of the constructions and the statistics of the 15
games can be found in Appendix E.2.

Measures. As GAMEBENCH includes different categories
of decision-making problems, it is indispensable to consider
multiple evaluation measures. Roughly speaking, there are
two types of measures: i) the notion of optimality, including
OptGap and social welfare, and ii) the notion of equilibrium,
including NashConv and CCEGap. Note that computing the
equilibrium-type measures for the MCC category requires a
new method to compute the team’s best response (BR) (not
a single agent’s). The details can be found in Appendix E.3.

Algorithms. We incorporate different MD algorithms into
the GAMEBENCH, including the state-of-the-art baselines.
The comparison between these MD algorithms can be found
in Table 1. In addition, we also include CFR-type algorithms
as the baselines, including the CFR (Zinkevich et al., 2007)
and CFR+ (Tammelin, 2014). Although these algorithms
need to update the policy at each decision point, since the
numbers of decision points of the games in GAMEBENCH
are not too large, running these algorithms on these games
is relatively easy (academic-friendly).

7. Experiments

In this section, we evaluate our method on GAMEBENCH.
We first describe the experimental setup. Then, we present
the results by answering several research questions (RQs)

Setup. We compare the following methods: i) CMD: our
method where the hyper-parameters are determined by the
meta-controller introduced in Section 5.2, ii) GMD: the
hyper-parameters are fixedto e, =1/M,0<7 < M —1
(a uniform distribution), iii) MMD-KL: the state-of-the-
art method called magnetic mirror descent (Sokota et al.,
2023) where the policy updating rule is induced with KL
divergence, iv) MMD-EU: similar to MMD-KL but the
policy updating rule is induced with squared Euclidean norm
(see Appendix D.3 for the derivation), v) CFR: the policy
is updated based on regret (Zinkevich et al., 2007), and vi)
CFR+: an advanced version of CFR (Tammelin, 2014). In
CMD and GMD, we also include a magnet policy, which has
been argued desirable (Sokota et al., 2023; Liu et al., 2023).
Nevertheless, we note that this does not cause inconsistency
with our method as we can equivalently obtain them by
setting M and o, (see Appendix D.2). Moreover, without
explicitly specifying, the results are obtained under ¢ (z) =
zlnz, z € (0,1]. In RQ4, we study more possible Bregman
divergences by setting different ¢ in Table 2.



Configurable Mirror Descent: Towards a Unification of Decision Making

7.1. Results and Analysis

RQ1I. (Desiderata D1 and D2) Can CMD effectively tackle
all categories of decision-making problems? In Figure 4, we
show the learning performance of different methods across
15 games. From the results, we can see that, CMD can effec-
tively solve all categories of decision-making problems: in
single-agent and cooperative categories, CMD can find the
approximate optimal (joint) policy (the OptGap converges
to an extremely small value), and in other categories, CMD
can find the approximate Nash equilibrium (the NashConv
converges to an extremely small value).

RQ?2. (Comparison with Baselines) How does CMD per-
form compared with baselines? As shown in Figure 4, by
comparison, we can obtain the following takeaways.

* Incorporating multiple historical policies and dynamically
adjusting the hyper-parameters could accelerate policy
learning in terms of the number of iterations. This can be
verified by comparing CMD with MMD-KL where CMD
can converge to a similar OptGap or NashConv value with
MMD-KL using fewer iterations. This advantage holds
even without tuning the hyper-parameters: in most of the
games, GMD (the hyper-parameters are fixed) can also
converge to a similar OptGap or NashConv value with
MMD-KL using fewer iterations. For GMD with different
heuristic hyper-parameter adjustment strategies such as
linear decay can be found in Appendix F.4.

* Introducing the meta-controller is important as it not only
accelerates policy learning but also could achieve compet-
itive or better outcomes. Specifically, in terms of Nash-
Conv, CMD outperforms the baselines in MCCKuhn-A
and MCCKuhn-B and performs on par with the baselines
in all other games. However, in the most difficult Leduc
poker, GMD cannot effectively decrease the NashConv,
showcasing the indispensability of the MC.

* Regarding the CFR-type algorithms, the results similar to
previous works (Sokota et al., 2023) are also observed: i)
The vanilla CFR is typically inferior to CFR+ and CMD
in all the games, and ii) in most of the games, CFR+
outperforms CMD over short iteration horizons but is
quickly caught by CMD for longer horizons.

RQ3. (Different MCs) Is the direction-guided update in the
meta-controller important? In Figure 5, we compare DRS
proposed in Section 5.2 with DGLDS, RS, GLDS, and GLD
(see Appendix D.4 for details on these MCs). As we can see,
our proposed MC significantly outperforms others either in
convergence rate or final performance. In Appendix E.5, we
visualize the evolution of the hyper-parameter values during
the policy learning, verifying the intuition that our DRS can
more efficiently adjust the hyper-parameters.

RQA4. (Different Bregman Divergences) How does CMD
perform under different Bregman divergences? In Figure 6,

R Kuhn 3 Leduc
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Figure 5. Results for different types of MC.

we show the learning curves of different instances of CMD
instantiated with different convex functions. From the re-
sults, we can see that the KL divergence (¢ (z) = z1lnx),
though has been widely adopted, could be not the optimal
choice across all the decision-making categories. To our
knowledge, CMD is the first algorithm that is endowed with
the capability of (empirically) exploring a broader class of
Bregman divergence, a prominent feature compared with
existing MD methods. See Appendix F.6 for more results.
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Figure 6. Results for different convex functions.

RQ5. (Desiderata D3 and D4) Can CMD generalize to con-
sider different solution concepts and evaluation measures?
In Figure 7, we apply CMD to two different measures: CCE-
Gap (top line) and social welfare (bottom line). The results
verify the effectiveness of incorporating multiple histori-
cal policies and dynamically adjusting the hyper-parameter
values conditional on the evaluation measures when consid-
ering other evaluation measures beyond NashConv. More
results and analysis can be found in Appendix F.§. Notably,
our CMD can be easily applied to different measures with
minimal modifications: changing the MC’s objective L.

RQG6. (Desiderata DS and D6) Is running the different algo-
rithms computationally difficult? We found that, although
extra operations may be required, running the MD and CFR
algorithms on GAMEBENCH does not cause much burden
on the computational resource. The analysis of the compu-
tational complexity can be found in Appendix F.9.

8. Limitations, Future Works, and Conclusions

In this section, we discuss the limitations of the current
version of our approach and present the future directions,
followed by conclusions of this work.
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8.1. Limitations and Future Works

This work aims to develop a single algorithm to effectively
tackle all categories of decision-making problems: single-
agent, cooperative multi-agent, competitive multi-agent, and
mixed cooperative and competitive multi-agent categories.
As a preliminary attempt, there are still some limitations
that are worth investigating in future works.

Firstly, as the meta-controller determines the values of the
hyper-parameter by sampling multiple candidates, extra
computational cost is needed to evaluate the performance of
these candidates. In Appendix F.9, we present the running
time of an iteration of different methods. While requiring
extra computational cost, we view this as one of the fu-
ture directions: developing more computationally efficient
hyper-parameter value updating methods without sacrific-
ing performance. For example, in contrast to the current
sampling method where the historical samples are entirely
ignored after each update, these historical samples could be
used to guide the selection of the new hyper-parameter val-
ues, e.g., via Bayesian optimization (Lindauer et al., 2022)
or offline learning approaches (Chen et al., 2022). As a re-
sult, we may not need to sample multiple candidates, which
could further reduce the extra computational cost.

Secondly, we evaluated CMD primarily from the empirical
perspective, and the results demonstrate its promise in solv-
ing all categories of decision-making problems. Theoretical
analysis of the behavior (e.g., the convergence rate) of CMD
could be an interesting problem and may require novel tools
that may be different from existing works since the pol-
icy updating rule of CMD is established with a numerical
method, rather than depends on the closed-form solution to
the regularized optimization problem in each decision point
under some specific Bregman divergence (Sokota et al.,
2023; Liu et al., 2023; Lee et al., 2021).

Thirdly, though our methods are capable of considering a
broader class of Bregman divergence, they still require the
mathematical formulation of the convex function ¢ as com-
puting the value of the dual variable by using the Newton
method requires a set of related functions derived from ) (as
shown in Table 2). In other words, the number of Bregman
divergences considered in our method is still limited. An
interesting future direction is to develop a novel method
to more effectively explore the entire space of the convex
function, such as using a neural network to represent the
convex function v, which leads to the neural Bregman di-
vergence (Lu et al., 2023; Siahkamari et al., 2020; Cilingir
et al., 2020; Amos et al., 2017). Moreover, using neural
Bregman divergence could also be a possible solution for
automatically choosing the Bregman divergences for differ-
ent decision-making categories. Nevertheless, it could be
non-trivial to integrate the neural Bregman divergence as
training the neural network to well approximate the optimal
convex function for the given category may not be easy and
thus may require new treatment.

Finally, in its current version, GAMEBENCH consists of 15
academic-friendly games covering all categories of decision-
making problems, different evaluation measures, and several
baseline algorithms. We believe further extensions could be
valuable. i) We could include more games with varying com-
plexity (e.g., different numbers of decision points) (Lanctot
et al., 2023). ii) We could include more evaluation measures
such as fairness (Rabin, 1993). iii) We could include more
algorithms. In particular, we may include deep learning-
based algorithms (Schulman et al., 2017; Yu et al., 2022;
Lanctot et al., 2017) and investigate whether there exists
a single deep learning-based algorithm that can effectively
solve all categories of decision-making problems. iv) Re-
cently, much attention has been drawn to studying the ability
of large language models (LLMs) to solve various decision-
making problems (Hong et al., 2023; Bakhtin et al., 2022;
Mao et al., 2023). Therefore, an interesting extension is to
include LLMs as the baselines, and if necessary, develop
new LLMs to more effectively solve different categories of
decision-making problems.

8.2. Conclusions

In this work, we make the preliminary attempt to develop
a single algorithm to tackle ALL categories of decision-
making problems and provide three contributions: i) the
GMD, a generalization of exiting MD algorithms, which can
be applied to different decision-making categories involv-
ing different numbers of agents and different relationships
between agents (D1 and D2), ii) the CMD which can be con-
figured to apply to different solution concepts and evaluation
measures (D3 and D4), and iii) the comprehensive (DS) and
academic-friendly (D6) benchmark — GAMEBENCH. Exten-
sive experiments demonstrate the effectiveness of CMD.
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A. Code Repository

Code for experiments is available at https://github.com/Ipadli/CMD.

B. More Related Works

Single-Agent Category. In the single-agent category, reinforcement learning (RL) (Sutton & Barto, 2018) has proved
successful in many real-world applications. The power of RL is further amplified with the integration of deep neural
networks, leading to various deep RL algorithms that have been successfully applied to various application domains such
as video games (Mnih et al., 2015), robot navigation (Singh et al., 2022), and financial technology (Sun et al., 2023b).
Among these algorithms, PPO (Schulman et al., 2017) is one of the most commonly used methods to solve single-agent RL
problems. Recent works have shown that independent PPO (de Witt et al., 2020; Sun et al., 2023a) can effectively solve
single-agent and cooperative multi-agent RL problems. In addition, a variant of PPO is also shown to be effective in solving
two-player zero-sum games when both players adopt this algorithm (Sokota et al., 2023). Nevertheless, it remains elusive
whether these single-agent algorithms can be applied to solve other categories of decision-making problems which may
involve different properties including different numbers of agents, different relationships between agents, different solution
concepts, and different evaluation measures. In this work, we aim to develop a single algorithm that, when executed by each
agent, provides an effective approach to address different categories of decision-making problems.

Cooperative Multi-Agent Category. Cooperative multi-agent RL (MARL) has been demonstrated successful in solving
many real-world cooperative tasks such as traffic signal control (Xu et al., 2021; Su et al., 2022), power management (Wang
et al., 2021b), finance (Fang et al., 2023), and multi-robot cooperation (Rizk et al., 2019). In the past decade, a variety of
MARL algorithms, e.g., QMIX (Rashid et al., 2018) and its variants (Son et al., 2019; Rashid et al., 2020; Wang et al.,
2021a), MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), and MAPPO (Yu et al., 2022), to name just a few,
have been proposed and achieved significant performance in various multi-agent benchmarks, e.g., SMAC (Samvelyan
etal., 2019) and Dota II (Berner et al., 2019). These algorithms typically follow the principle of centralized training and
decentralized execution (CTDE) where global information is only available during training. Despite their success, they
cannot be directly applied to competitive and mixed cooperative and competitive categories. In this work, our proposed CMD
can be applied to different decision-making categories and share similarities with the CTDE paradigm: the meta-controller
takes all the agents (i.e., the joint policy) into account to optimize the hyper-parameters conditional on the targeted evaluation
measure (a “centralized” process) while each agent in the environment independently execute the GMD with the given
hyper-parameters to update the policy (a “decentralized” process).

Competitive Multi-Agent Category. There has long been a history of researchers pursuing artificial intelligence (AI)
agents that can achieve human-level or super-human-level performance in solving various competitive multi-agent games
such as chess (Campbell et al., 2002), Go (Silver et al., 2017), poker (Brown & Sandholm, 2019), and Stratego (Perolat et al.,
2022). Due to the competitive nature, the development of learning algorithms for solving these games is typically largely
different from single-agent and cooperative MARL. Among others, counterfactual regret minimization (CFR) (Zinkevich
et al., 2007) and policy-space response oracles (PSRO) (Lanctot et al., 2017) are two representative algorithms that have
been widely used to solve complex games (Schmid et al., 2023). Another category of algorithm that has drawn increasing
attention recently is the mirror descent (MD) (Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003). In contrast to CFR
and PSRO which are “average-iterate” algorithms, MD has proved the “last-iterate” convergence property in solving
two-player zero-sum games (Bailey & Piliouras, 2018; Kangarshahi et al., 2018; Wibisono et al., 2022; Kozuno et al.,
2021; Lee et al., 2021; Jain et al., 2022; Ao et al., 2023; Liu et al., 2023; Cen et al., 2023; Sokota et al., 2023) and some
classes of general-sum games (Anagnostides et al., 2022b). Moreover, MD has also been demonstrated effective in solving
single-agent RL problems (Tomar et al., 2022). Despite their success, existing MD algorithms typically focus on some
specific Bregman divergences which may not be the optimal choices across different decision-making categories. Our
proposed CMD generalizes existing MD algorithms to consider a broader class of Bregman divergence, which could achieve
better learning performance in addressing different categories of decision-making problems.

Mixed Cooperative and Competitive Category. In some real-world scenarios, the relationship between agents could be
neither purely cooperative nor purely competitive. For example, in a football game, the agents belonging to the same team
need to cooperate while also competing with the other team (Kurach et al., 2020). In hidden-role games (Carminati et al.,
2023), each agent tries to identify their (unknown) teammates and compete with other (unknown) adversaries (Wang &
Kaneko, 2018; Serrino et al., 2019; Albrecht et al., 2022). However, in contrast to the other three categories (single-agent,
purely cooperative, and purely competitive), mixed cooperative and competitive (MCC) games are largely unstudied (Xu
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et al., 2023). Furthermore, as MD algorithms typically require updating the policy at each decision point, running them on
the current benchmark games such as football (Kurach et al., 2020) could be computationally prohibited. In the present
work, we construct 3 MCC games that are academic-friendly — their numbers of decision points are not too large and hence,
running MD algorithms (and other algorithms such as CFR-type (Zinkevich et al., 2007; Tammelin, 2014)) on these games
does not require much computational resource (e.g., running time and memory usage).

Hyper-Parameter Tuning. Existing works typically determine the hyper-parameter values of the MD algorithms depending
on the domain knowledge (Sokota et al., 2023; Anagnostides et al., 2022b; Hsieh et al., 2021; Zhou et al., 2018; Mertikopoulos
et al., 2019; Bailey & Piliouras, 2019; Golowich et al., 2020), which, though convenient for theoretical analysis, may
not be easy to generalize to different games. On the other hand, as the evaluation measures, e.g., NashConv, could be
non-differentiable with respect to the hyper-parameters, the gradient-based methods such as STAC (Zahavy et al., 2020)
could also be less applicable. In this sense, a more feasible method is the zero-order hyper-parameter optimization which can
update the parameters of interest without access to the true gradient, which has been extensively adopted in the adversarial
robustness of deep neural networks (Ilyas et al., 2018), meta-learning (Song et al., 2020), transfer learning (Tsai et al.,
2020), and neural architecture search (NSA) (Wang et al., 2022). Nevertheless, we found that directly applying existing
zero-order methods could be ineffective as when the value of the evaluation measure is too small, they may not be able
to derive an effective update for the hyper-parameter. To address this issue, we propose a simple yet effective technique —
direction-guided update — where the performance difference between two candidates is used to only determine the update
direction of the hyper-parameters rather than the update magnitude, which is more effective than existing methods (Wang
et al., 2022) when the value of the performance is extremely small.
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C. Notation Table
Table 3. Notation Table.
N N ={1,--- N}, the set of N agents.
S the finite set of states.
A A = X;en A; where A; is the finite set of actions of agent 1.
@) O = x,;enO; where O is the finite set of observations of agent .
Q) Q = X;en); where ; : S x A — O; is the observation function of agent 4.
pP P:S x A— A(S), the state transition function.
R R = {ri}ien where r; : S x A — R is the reward function of agent 3.
vy v € [0,1), the discount factor.
v v € A(S), the initial state distribution.
Tt the decision point (action-observation history) of agent i at time ¢, 7/ € T;'.
T! T = (O; x A;)?, the space of decision points of agent ¢ at time step ¢.
II II = x;enrIl; where 11, is the policy space of agent <.
iy w=m O - Oy, the joint policy, w = 7w, X --- X 7y, the product policy.

the value functions of agent i, V; (v, ) := Es . [Vi(s, 7)].

L(m) the evaluation measure of the joint policy 7r.
Tk the single agent’s policy at the iteration k of an algorithm.
g the joint policy at the iteration k of an algorithm.
Q(mx) Q) = (Q(a, Tk))ae, the action-value vector of a single agent induced by 7.
By(z;y) By(z;y) = ¢(x) — ¢(y) — (Vé(y), z — y), the Bregman divergence with respect to ¢.
K the number of iterations of an algorithm.
M M > 1, the number of historical policies.
a a = (ar)o<r<Mm—1, . is the regularization intensity of mj_.
€ € > 0, the smallest probability of an action.
() (1) =D ,ca¥(m(a)), ¢ is some convex function defined on [0, 1].
A B B = (Ba)aca, the dual variables.
A B A=Q(m) + XM ard (m—r), B="""a,, where ¢ is the derivative of ¢.
't the inverse function of v’ (the derivative of ).
C C' > 0, the number of iterations for the Newton method.
0. 00 9 = [Sacat " (Al0) = N/B)] ~ 1.9 (N) = T s 51T (Ala) — N)/B).
[ 1) the derivative of ¢’ 1.
D the number of sampled candidate a’s.
{a?}D | D candidates by perturbing the current cx.
{77}, {n7 = GMD(a?)}_,, D new joint policies derived via GMD.
I the smoothing parameter in DRS and RS.
[, 7H] the interval of the radiuses of the spheres in DGLDS, GLDS, and GLD.
{u/ }jD:1 D candidate updates sampled from a spherically symmetric distribution u? ~ g.
aﬂ_, ol aﬂ_ = CLIP! (a + pu?), o = CLIP! (o — pu?), the candidates by perturbing the current cv.
ﬂ'i_, 7l 71'1 = GMD(ai_), 7/ = GMD(a ), the new joint policies obtained via GMD.
57 § = ﬁ(ﬂi) — L(w), the performance difference between 7"1 and 7/ .
u* the final update.
Sgn Sgn(z) = 1if z > 0, Sgn(z) = —1if z < 0, otherwise, Sgn(z) = 0.
CLIP; CLIP! () = vif z < ¢, CLIP}(2) = 1if z > 1, otherwise, CLIP; () = z, where 0 < ¢ < 1.
K K > 1, update the «x every & iterations.
P the magnet policy in MMD.
13 & > 0, the regularization intensity of the magnet policy.
n n > 0, the step size in MMD.
n 7 > 0, the step size of the magnet policy in MMD.
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D. Configurable Mirror Descent

In this section, we present all the details of our methods. In Section D.1, we present the details of GMD. In Section D.2, we
establish some connections between GMD and existing MD algorithms. In Section D.3, we restrict the convex function
¢ to the squared Euclidean norm and derive the closed-form solution under the MMD policy updating rule. Finally, in
Section D.4, we present the details of different meta-controllers.

D.1. Generalized Mirror Descent

In this section, we present the proof of Proposition 5.1, the pseudo-code of Newton’s method for computing the value of the
dual variable, and the convex functions considered in our work.

Proof of Proposition 5.1. Consider the optimization problem (3). By the definition of Bregman divergence, we have:

M-1

Tg4+1 = arg maXﬂEH<Q(7Tk)7 7T> - ZT:O O[.,-B¢(’/T, ’/Tk—T); (5)

= Tp+1 = arg MaXqem(Q(my), m) — Zi;l ar[p(m) = d(mh—r) = (&' (Th—r ), T — Th_r)], (6)
M-1 M—1

= Ty = arg maxrern(Q () + Zﬁo ar ¢ (mp_r), ) — () ZT:o o, + const., (7)

where “const.” summarizes all terms that are irrelevant to 7. Let A = Q(m,) + M " a, ¢/ (1) and B = S o,
which are fixed at the current iteration k. Then, we can convert Eq. (3) to the following optimization problem:

Tp41 = argmax, (A, ) — Bo(m) + const.,

8
s.t. ZaeA 7 (a) = 1 and 7 (a) > 0,Va € A. ®

To solve the constrained optimization problem (8), we can apply the Lagrange multiplier, which gives us:

L(m, )\ B) = (A, ) — Bo(m) + const. — A (ZQGA m(a) — 1) +> _ farla), )

where A and 3 = (8,)ac.4 are the dual variables. For such problems, we can get the Karush—Kuhn-Tucker (KKT) conditions
for each component (action) a € A as follows:

A(a) + B¢/ (m)(a) = A+ Ba = 0, (10a)
> @) =1, (10b)

Bam(a) =0, (10c)

w(a) > 0,8, > 0. (10d)

Then the problem is to find a policy 7 such that it satisfies all the above conditions, which could be difficult owing to two
reasons: i) it simultaneously involves the two dual variables A and f3,, and ii) in Eq. (10a), computing the value ¢'(7)(a)
involves all the components (actions) as ¢ is defined on the policy , not the individual component (action) a € A.

To address the challenges, we apply the two conditions: 7(a) > e and ¢(7) = > . 4 ¥(m(a)). Then, we have ¢'(7)(a) =
y'(m(a)). As aresult, the problem (10a—10d) is simplified to the following problem:

A(a) + BY'(m(a)) — X =0, (11a)
ZaEAw(a) =1, (11b)
m(a) > e. (11c)
From Eq. (11a), we can get that: Va € A,
n(a) = v/~ (A(“;A) , (12)
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where 1)’ is the inverse function of 1. Substituting the above expression for 7(a) into the constraint (10b), we have:

_1 (Aa) — A
_ 1—1 —
zaeA m(a) = ZaeA ¥ < B > L (13)
which completes the proof. O

Numerical Method for Computing . Notably, Eq. (13) typically cannot be solved analytically. To address this problem,
we propose to use a numerical method to compute the value of A, offering the possibility of exploring a broader class of
Bregman divergence. Specifically, for any convex function 1), we employ the Newton method (Ypma, 1995) to compute the
value of A, which is shown in Algorithm 3, where C' is the number of iterations.

Algorithm 3 Newton method for computing the value of \
1: Given v, A, and B. Randomly initialize the value of \
2: for C iteratio?s)do

. _ g(A
3 A=A— Faey
4: end for

Different Bregman Divergences. In Table 2, we list the convex functions considered in our work. To be more intuitive, we
plot these convex functions in Figure 8.
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Figure 8. Plots for different convex functions .

D.2. Connection Between GMD and Existing MD Algorithms

In this section, we present some discussion on the connection between GMD and existing MD algorithms. In Table 4, we
present the conditions for converting GMD to different MD algorithms and their formulations.

Table 4. Connection between GMD and existing MD algorithms.

Method ‘ Conditions ‘ Formulation

MD | M =1,a0 € (0,1] | Thy1 = argmaxren(Q(mr), m) — aoBy(m, k)

M=k, ar_1, € (0,1],
a,=0,0<7<k—-1

MMD 1 = arg maxXren (Q(mx), m) — ak—1B4(m, 71) — aoBy(, k)

GMD — MD. It is trivial to get the MD algorithm (Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003) by setting M =1
and ap > 0, that is, MD only considers the current policy 7, when deriving the new policy 7j1.

GMD — MMD. To obtain MMD (Sokota et al., 2023), we can set M = k and then only let a;_1 and a to be positive,
while all other terms are 0. That is, MMD considers two previous policies — the initial policy 71 and the current policy 7y, —
when deriving the new policy. In the MMD’s terminology, the initial policy 7, serves as the magnet policy.

In practice, we can get more variants by setting the M and o, which shows that GMD is a general method. For example, we
can consider both M < k previous policies and the initial policy 7 (i.e., adding a magnet policy) when deriving the new
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policy 741, which is taken as the default choice for instantiating the GMD in our experiments, that is,

M-1
Tht1 = argrpgﬁ((@(wk),ﬂ — a1 By(m,m1) — Tz::o arBy(m, Th—r). (14)

In Appendix F.7, we perform an ablation study to show the effectiveness of adding such a magnet policy. Nevertheless, it is
worth noting that this particular choice should not be confused with the original MMD even when M = 1 as the policy
updating rule is derived via a numerical method, instead of relying on the closed-form solution (Sokota et al., 2023).

D.3. Derivation of MMD-EU

In this section, we present the details of the baseline, MMD-EU, used in our experiments. This baseline follows the spirit of
MMD-KL (Sokota et al., 2023). Consider the following problem:

1
Tht1 = argr;gg{((Q(wk),ﬂ —&By(m, p) — ;’qu(?ﬂm), (15)

where ¢ > 0 is the regularization intensity, > 0 is the step size, and p is the magnet policy. Let ¢(m) = 3 . 4 37 (a)|?,
i.e., the squared Euclidean norm. Then, we need to optimize the following objective:

1
(@), ) = £l = ol = 5-llx = mill (16)

with the constraint ), , 7(a) = 1 and 7(a) > 0. We can use the Lagrange multiplier to get the following objective:

(Q(m), m) — gl\w—pllé - 2—177H7r R (1 - Zw(a)) : (17)

acA

Taking the derivative of both 7 and )\, we have:

Q(a, ) — &(m(a) — p(a)) — %(w(a) —7r(a)) —A=0,Va € A, (18)

S () = 1. (19)
acA

Therefore from Eq. (18), we have:

l7T' a a, T —
o) = SO+ 3m0) + Qo) A o0

Substituting the above equation to Eq. (19), we have:

Lrp(a) + Qa, m) — A

¢pla) +
_1 1)
% €+
1 1
=3 |eot) + o) + Qam)] = (€4 2+ T @)
acA K K acA
Note that }°, ., [€p(a) + %wk(a)} =&+ ., we have:
ZQEA Q(aa 7Tk')
A= 7= 23
Al (23)
Then we can compute the new policy as follows:
@) = épa) + pmi(a) + Qa,m) — gy Larca Q(a'ﬂfk). )

()
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Theoretically, we note that by choosing the suitable values for £ and 7, we can always ensure that 7 is well-defined, i.e.,
m(a) > 0,Va € A. In experiments, we can use a projection operation to ensure this condition ({ = le — 10 is used to avoid
division by zero):
max{0,7(a)} + ¢
Trr1(a) = . 25
Hl) = a0, (@) 7 ¢ 9

In addition, similar to MMD-KL, the magnet policy is updated as (i.e., moving magnet):

pr+1(a) = (1 —7)pr(a) + 11 (a), (26)

where 77 > 0 is the learning rate for the magnet policy p. In practice, the initial magnet policy p; can be set to the initial
policy 7, which is typically a uniform policy.

D.4. Meta-Controller for Different Measures

GMD generalizes exiting MD algorithms in two aspects: i) it takes multiple previous policies into account and can recover
some of the existing MD algorithms by setting the M and «, and ii) it can consider a broader class of Bregman divergence
by setting ¢ to more possible convex functions (Table 2). As a consequence, we argue that when GMD is executed by each
agent independently, it could satisfy the first two desiderata D1 and D2 presented in the Introduction. However, as mentioned
in Section 5.2, since there is no explicit objective regarding different evaluation measures (and different solution concepts)
arises in this “decentralized” execution process, GMD itself cannot satisfy well the last two desiderata D3 and D4. To
address the challenges, our solution is the zero-order meta-controller (MC) which dynamically adjusts the hyper-parameters
conditional on the evaluation measures (Section 5.2). In this section, we present the details of different MCs.

Direction-Guided Random Search (DRS). Our DRS method is obtained by applying the direction-guided update (Sec-
tion 5.2) to the existing RS method presented in (Wang et al., 2022). Specifically, at the iteration k, we first sample D
candidate updates {u’} ;-3:1 from a spherically symmetric distribution u? ~ ¢. Then, we update o as follows:

o), = CLIP! (a + pw?), &’ = CLIP} (o — pu?), 1 < j < D,

m). = GMD(c,), 7/ =GMD(c’ ), 1 <j < D,

8 = L(m]) — L(w), 1 <j< D, (DRS)

D o
u'=— ijl Sgn(é?)u?,
o + CLIP! (o 4 u*).
Sgn(z) is defined as: Sgn(z) = 1if z > 0, Sgn(z) = —1if z < 0, otherwise, Sgn(z) = 0. p is the smoothing parameter
determining the radius of the sphere. CLIP} is the element-wise clipping operation defined as: CLIP}(Z) = ifz < 4,
CLIP} (z) = 1if z > 1, otherwise, CLIP!(2) = 2, where 0 < + < 1. Note that the clipping operation which bounds «
above ¢ > 0 is necessary as the term B is used as the denominator in Eq. (12). In addition, the operation Sgn(-) plays an
important role and differentiates our DRS from the vanilla RS (Wang et al., 2022). Intuitively, in the games where the value
of the evaluation measure £ is extremely small and converges quickly, the magnitude of 67 would be too small to derive an
effective update. In contrast, by using the operation Sgn(-), the difference between the performance of ai and o’ will only
determine the update direction, not the update magnitude, which could be more effective.

Random Search (RS). The vanilla RS which is adapted from (Wang et al., 2022). The only difference from DRS is it
updates  directly based on the performance difference ¢7. Precisely, we have:

o, = CLIP} (a + piw’), @l = CLIP}(ex — pwr’), 1 < j < D,

ml =GMD(c} ), n/ =GMD(a’ ), 1<j < D,

6 = L(w}) = L(w), 1<j< D, (RS)
D .

u = —Z]Zl 6Ju]7

o + CLIP! (o + u*).

GradientLess Descent (GLD). This method is adapted from (Wang et al., 2022). At the iteration k, we first sample D
candidate updates {u’} le. Different from RS which samples the candidates from a fixed radius (the smoothing parameter
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1 in DRS and RS), we independently sample the candidates on spheres with various radiuses uniformly sampled from the
interval [rp, rg]. Then, we update c as follows:
o), = CLIP!(a +w?), ®}, = GMD(a,), 1 < j < D,

j* = argmin{L(x] )},
i (GLD)

u* =’

o « CLIP! (a + u™).
Intuitively, by comparing the performance of D candidates, « is updated by the candidate with the smallest value of L.

GradientLess Descent with Summation (GLDS). Different from GLD which uses only one of the D samples to update the
a, we can follow the idea of RS/DRS to take all the candidates into account by summation. Specifically, let £() denote
the performance of the current policy 7y, then we have:

o/, = CLIP (a + ?), ®}, = GMD(e,), 1 < j < D,

&) = L(m}) — L(m), 1< j <D,

. D ..
ut = — g ol u’,
j=1

o « CLIP! (a + u™).

(GLDS)

Direction-Guided GLDS (DGLDS). Applying the direction-guided update to the GLDS, we can get this method. Precisely,
let £L() denote the performance of the current policy 7y, then we have:

o/, = CLIP! (a +?), ®}, = GMD(e,), 1 < j < D,
D . .
* J J
u* = Zj:l Sgn(é7)u?,

a + CLIP} (o + u*).

(DGLDS)

As the meta-controller needs to evaluate the performance of the candidates, extra computational cost is required. In our
experiments, to trade-off between the learning performance and running time, we update o every x > 1 iteration. In
addition, during the first M — 1 iterations, i.e., k < M, as there are only k£ < M historical policies, we set o, = % for
0 < 7 < k — 1. In other words, MC will start to update o only after M iterations. Algorithm 2 in the main text is the
simplified version which shows the primary principle of CMD. In Algorithm 4, we present the full details of CMD.

Algorithm 4 Configurable Mirror Descent (CMD)
1: Given L, 1, initial (joint) policy 71, M, D, €, ¢,
2: fork=1,--- ,K do

3. if k < M then
4; ar =4, V0<T<k-1
5:  else
6: if k%~ = 0 then
7: Sample D candidates {o/} 2,
8: Derive new joint policies {7/ = GMD(a) le
9: Evaluate new joint policies {£ ()},
10: Update o based on {L£(77)} 1.,
11: end if
12:  endif
13:  Compute 71 via GMD with the updated o
14: end for
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E. GAMEBENCH

In this section, we present the details of GAMEBENCH (see Figure 3 for an overview). In Section E.1, we discuss the
motivation and desiderata by briefly reviewing the games that have been employed to test existing MD algorithms. In
Section E.2, we present the details of the construction of all 15 games. Finally, in Section E.3, we present the evaluation
measures considered in this work.

E.1. Motivation and Desiderata

As mentioned in Section 6, existing benchmarks for decision making are typically specialized for some specific categories.
Furthermore, running MD algorithms on these benchmarks could be computationally prohibitive as the number of decision
points in the environments could be extremely large. On the other hand, though MD algorithms have been demonstrated
powerful in single-agent RL (Tomar et al., 2022) and two-player zero-sum games (Wibisono et al., 2022; Kozuno et al.,
2021; Lee et al., 2021; Liu et al., 2022b; Jain et al., 2022; Ao et al., 2023; Liu et al., 2023; Cen et al., 2023; Sokota et al.,
2023) in recent works, their experiments are typically conducted on a handful of games. It remains elusive how will these
MD algorithms perform when applied to other categories of decision-making problems. In Table 5, we briefly review the
games that have been used in some recent works.

Table 5. The games that have been used in recent works on MD algorithms. Note that this list does not include the games that are used
to benchmark deep learning-based algorithms in these references. !This game is made to be a general-sum game via a tie-breaking
mechanism in this reference. ?This game is made to be a zero-sum game in this reference.

Reference Game Category
Kuhn Poker Two-Player Zero-Sum
Leduc Poker Two-Player Zero-Sum
(Sokota et al., 2023) 2x2 Abrupt Dark Hex | Two-Player Zero-Sum
4-Sided Liar’s Dice Two-Player Zero-Sum
. Kuhn Poker Two-Player Zero-Sum
(Liu et al,, 2023) Leduc Poker Two-Player Zero-Sum
. Kuhn Poker Two-Player Zero-Sum
(Anagnostides et al., 2022b) Leduc Poker Two-Player Zero-Sum
Sheriff Two-Player General-Sum
. Battleship Two-Player General-Sum
(Anagnostides et al., 20222) Goofspiel* Two-Player General-Sum
Liar’s Dice Two-Player Zero-Sum
Kuhn Poker Two-Player Zero-Sum
(Lee et al., 2021) Leduc Poker Two-Player Zero-Sum
Pursuit-Evasion Two-Player Zero-Sum
Leduc Poker Two-Player Zero-Sum
. Goofspiel Two-Player Zero-Sum
(Liu et al., 2022b) Liar’s Dice Two-Player Zero-Sum
Battleship? Two-Player Zero-Sum

In view of the above facts, we aim to construct a novel benchmark which should satisfy two desiderata (D5 and D6 presented
in the Introduction): i) it should cover all categories of decision making (comprehensive), and ii) the games are relatively
simple and running MD algorithms on these games does not require much computational resource (academic-friendly).

E.2. Games

In this section, we present the details of the construction of all 15 games in our GAMEBENCH. All the games are divided into
5 categories: single-agent, cooperative multi-agent, competitive multi-agent zero-sum (zero-sum), competitive multi-agent
general-sum (general-sum), and mixed cooperative and competitive (MCC) categories. In Table 6, we give an overview
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of all the games. We curate the GAMEBENCH on top of OpenSpiel (Lanctot et al., 2019). For cooperative, zero-sum, and
general-sum categories, we construct the game by passing the configurations to the games implemented in OpenSpiel. The
configurations for these games are deliberately selected such that the instances of these games are academic-friendly (i.e.,
their numbers of decision points are not too large). For single-agent and MCC categories, we obtain the games by modifying
the original games in OpenSpiel. In the following, we present the details of each category.

Table 6. The games and their statistics in GAMEBENCH. N is the number of players and “#DP” stands for the number of decision points.

Category Name of Game w/ Config. Shorthand N #DP Evaluation Measure
single_agent_kuhn_a Kuhn-A 1 6 OptGap

Single-Agent single_agent_kuhn_b Kuhn-B 1 6 OptGap
single_agent_goofspiel Goofspiel-S 1 8 OptGap
tiny_hanabi_game_a TinyHanabi-A 2 8 OptGap

Cooperative  tiny_hanabi_game_b TinyHanabi-B 2 6 OptGap
tiny_hanabi_game_c TinyHanabi-C 2 6 OptGap
kuhn_poker(players=3) Kuhn 3 48  NashConv, CCEGap

Zero-Sum leduc_poker(players=2) Leduc 2 936 NashConv
goofspiel(players=3) Goofspiel 3 30  NashConv, CCEGap
bargaining(max_turns=2) Bargaining 2 178 NashConv, SW

General-Sum  trade_comm(num_items=2) TradeComm 2 22  NashConv, SW
battleship Battleship 2 210 NashConv, SW
mix_kuhn_3p_game_a MCCKuhn-A 3 48 NashConv

MCC mix_kuhn_3p_game_b MCCKuhn-B 3 48 NashConv
mix_goofspiel_3p MCCGoofspiel 3 30  NashConv

Single-Agent. We construct three single-agent games: Kuhn-A, Kuhn-B, and Goofspiel-S, from the original two-player
Kuhn poker and Goofspiel in OpenSpiel. Consider a two-player Kuhn poker game. To obtain a single-agent counterpart, we
fix one player’s policy as the uniform policy (called the background player) while only updating the other player’s policy
(called the focal player) at each iteration. In Kuhn-A, player 1 is selected as the focal player while in Kuhn-B, player 2 is
chosen as the focal player, as the two players are asymmetric (Kuhn, 1950). Similarly, we can get Goofspiel-S. As the two
players are symmetric in Goofspiel (Ross, 1971), we choose player 1 as the focal player without loss of generality.

Cooperative. For cooperative games, we consider the following three two-player tiny Hanabi games (Foerster et al.,
2019; Sokota et al., 2021): TinyHanabi-A, TinyHanabi-B, and TinyHanabi-C. The payoff matrices along with the optimal
values of these games are given in Figure 9. These games are easy to obtain in OpenSpiel by setting the three parameters:
num_chance, num_actions, and payof f. For num_chance, they are 2, 2, and 2, respectively. For num_actions,
they are 3, 2, and 2, respectively.

Competitive Zero-Sum and General-Sum. We consider the following three zero-sum games: three-player Kuhn, two-
player Leduc, and three-player Goofspiel, and the following three general-sum games: two-player Battleship (Farina et al.,
2020), two-player TradeComm (Sokota et al., 2021), and two-player Bargaining (Lewis et al., 2017), which are implemented
in OpenSpiel. The configurations of these games are given in the second column in Table 6. Note that in contrast to most of
the existing works which only focus on two-player games, we set the number of players to more than two players in some of
the games: Kuhn and Goofspiel are three-player games.

Mixed Cooperative and Competitive (MCC). We construct the following three-player MCC games: MCCKuhn-A,
MCCKuhn-B, and MCCGoofspiel, from the original three-player Kuhn poker and three-player Goofspiel in OpenSpiel.
Consider a three-player Kuhn poker game. To obtain an MCC counterpart, we partition the three players into two teams:
Team 1 includes two players while Team 2 only consists of one player (i.e., two vs. one). When computing the rewards of
the players, in Team 1, each player will get the average reward of the team. Precisely, let 7™ = 7! + 72 denote the team
reward which is the sum of the original rewards of the two team members. Then, the true rewards of the two players are
7! = 72 = pteam /2 [n MCCKuhn-A, Team 1 includes players 1 and 2 (i.e., {1, 2} vs. 3), while in MCCKuhn-B, Team 1
includes players 1 and 3 (i.e., {1, 3} vs. 2). Similarly, we can get MCCGoofspiel in the same manner.
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TinyHanabi-A TinyHanabi-B TinyHanabi-C
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Player 2 (acts second)

Figure 9. Payoff matrices and optimal values of the three tiny Hanabi games.

As shown in Table 6, the number of decision points (#DP) varies across different categories, which shows that GAMEBENCH
includes diverse enough environments as, to some extent, the number of decision points reflects the difficulty of the game.

E.3. Evaluation Measures

As shown in Figure 3, we consider multiple evaluation measures in GAMEBENCH. There are two types of measures: i)
the notion of optimality, including OptGap and social welfare, and ii) the notion of equilibrium, including NashConv and
CCEGap. In the last column of Table 6, we present the measures employed in each game. In single-agent and cooperative
categories, we use OptGap as the measure which captures the distance of the current (joint) policy to the optimal (joint)
policy. In the other three categories, the primary measure is NashConv which captures the distance of the current joint
policy to the Nash equilibrium. In addition, we also consider other solution concepts and evaluation measures in some of the
games. For zero-sum Kuhn and Goofspiel, as there are three players, we also consider the measure CCEGap which captures
the distance of the current joint policy to the coarse correlated equilibrium (CCE). For general-sum games, we also consider
the social welfare (SW) of all the agents.

Except for the MCC category, all the measures can be easily computed by using the built-in implementation functions in
OpenSpiel. However, to compute the NashConv in the MCC games, we need to compute the best response policy of the
team, i.e., a joint policy of the team members, rather than the policy of a single agent. This is incompatible with the built-in
implementation in OpenSpiel, which only computes the best response policy of a single agent. In other words, if we directly
adopt the built-in implementation, the NashConv will correspond to the original three-player game, not the modified game.
Unfortunately, computing the exact joint policy of the team members is not easy in practice. Nevertheless, it is worth noting
that from our experiments, we found that MMD-KL can effectively solve cooperative decision-making problems. As a result,
we can apply MMD-KL to compute the approximate best response of the team as it is a purely cooperative environment from
the team’s perspective (the other team’s policy is fixed when computing the best response of the team). For a team that only
has a single player, we use the built-in implementation in OpenSpiel to compute the exact best response policy of the player.
In summary, during the policy learning process, when the evaluation of the current joint policy is needed, we use MMD-KL
as a subroutine to compute a team’s approximate best response while using built-in implementation to compute a single
player’s exact best response. In the MMD-KL subroutine, the starting point of the best response is set to the current joint
policy of the team members. In experiments, to balance the accuracy of the approximate best response and running time, the
number of updates in the MMD-KL subroutine is set to 100 (the returned joint policy can be also called a better response).

For example, in MCCKuhn-A, suppose the current joint policy iS T = Tieam X 73 Where me,m = 71 © 7o is the team’s joint
policy. The built-in implementation in OpenSpiel can only compute the best response policy for every single agent and
hence, the resulting NashConv(w) = Zf’zl [Vi(v, 7BR x w_;) — V;(v, )] corresponds to the original three-player game. In
contrast, in our method, we use MMD-KL to compute the team’s best response rather than the single agent’s. Therefore, the
NashConv of 7 is:

NashConv(7) = Vieam (v, TER X 73) — Vieam (¥, )

(27)
+ ‘/3(1/7 Team X W?]?R) - V3(V7 7\'),

where 7BR is the team’s BR policy computed via MMD-KL given that player 3 is fixed to 73 (that is, player 3 is a part of

the environment from the team’s perspective). As players 1 and 2 are fully cooperative, they share the same value Viean,.
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F. More Experimental Results

In this section, we provide more experimental details, results, and analysis. We briefly summarize each section below.

» Section F.1. More details on the experimental setup, including the hyper-parameter settings for different methods.
 Section F.2. Searching of M (the number of previous policies) and y (the smoothing parameter in DRS) (D1 and D2).
» Section F.3. Investigation of performance w.r.t. the number of joint actions (D1 and D2).

* Section F.4. Investigation of GMD with different heuristic strategies for adjusting o« (D1 and D2).

¢ Section F.5. Investigation of different meta-controllers (D1 and D2).

* Section F.6. Investigation of different Bregman divergences (D1 and D2).

 Section F.7. Investigation of the effectiveness of adding the magnet policy (D1 and D2).

» Section E.8. Investigation of different evaluation measures and different solution concepts (D3 and D4).

* Section F.9. Analysis of the computational complexity for running different algorithms on GAMEBENCH (D5 and D6).

F.1. Experimental Setup

Hyper-parameters. Table 7 provides the default values of hyper-parameters used in different methods. In the RS-type
meta-controllers (RS and DRS), the spherically symmetric distribution g is a standard multivariate normal distribution
N(0,I). For CMD/GMD, there are two critical hyper-parameters: the number of previous policies M > 1 and the smoothing
parameter  in DRS. In Section F.2, we perform an ablation study to determine their default values (given in Table 7), which
will be fixed in other experiments. The specific setups for each experiment will be given in each of the following sections.

Baselines. We consider the MMD-type (MMD-KL and MMD-EU) and CFR-type (CFR and CFR+) algorithms as the
baselines. It is worth noting that CFR-type algorithms can be also applied to single-agent and cooperative categories.

Computational Resources. Experiments are performed on a machine with a 24-core 19 and NVIDIA A4000. For CMD, the
results are obtained with 3 random seeds. For other methods, as there is no randomness, no multiple runs are needed.

Table 7. Default values of the hyper-parameters in different methods. All the hyper-parameters in GMD — C, ¢, and M — are also used in
CMD. For CMD, its hyper-parameters also include i) D (the number of samples) and « (update interval), which are shared for different
MCs, ii) p in the DRS and RS, and iii) 71, and rg in the GLD, GLDS, and DGLDS.

| CMD | MMD-KL/-EU
GMD Shared (D)RS (D)GLD(S)

Game K € C L M| D &k I rr, rg | € 7 n
Kuhn-A 100000 le-10 | 50 le6 1 | 5 10 005 001 005|1 0.1 0.05
Kuhn-B 100000 le-10 | 50 le6 1 | 5 10 005 001 005|1 0.1 005
Goofspiel-S 100000 1e-10 | 50 les6 1 | 5 10 005 001 0.05|1 0.1 0.05
TinyHanabi-A 100000 1le-10 | 50 le6 3 | 5 10 005 001 005|1 0.1 0.05
TinyHanabi-B 100000 1le-10 | 50 le6 1 | 5 10 005 001 005|1 0.1 0.05
TinyHanabi-C 100000 1le-10 | 50 le6 1 | 5 10 005 001 005|1 0.1 0.05
Kuhn 100000 1e-10 | 50 le-6 5 | 5 10 001 001 0.05|1 0.1 0.05
Leduc 100000 1e-10 | 50 le-6 3 | 5 10 0.05 001 005|1 0.1 0.05
Goofspiel 100000 1le-10 | 50 1les6 3 | 5 10 0.01 0.01 005|1 0.1 0.05
Bargaining 100000 1e-10 | 50 1le-6 5 | 5 10 005 0.01 005|1 0.1 0.05
TradeComm 100000 1e-10 | 50 les6 1 | 5 10 001 001 0.05|1 0.1 0.05
Battleship 100000 1e-10 | 50 le-6 1 | 5 10 0.05 001 005|1 0.1 0.05
MCCKuhn-A 100000 1le-10 | 50 le6 1 | 5 10 001 001 005|1 0.1 0.05
MCCKuhn-B 100000 1le-10 | 50 le6 1 | 5 10 001 001 005|1 0.1 0.05
MCCGoofspiel 100000 1le-10 | 50 le6 1 | 5 10 001 001 005|1 0.1 0.05
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F.2. Number of Historical Policies and Smoothing Parameter

In this section, we explore the influence of the number of previous policies M and the smoothing parameter ; in DRS on
the learning performance. We consider M € {1, 3,5} and x € {0.01,0.05} and thus, there are 6 combinations of (M, ).
Note that it would be impractical to enumerate all the combinations as M can be any integer greater than 0 and x4 can be any
real number greater than 0.

The experimental results are shown in Figure 10. From the results, we can see that different decision-making problems may
require different M and u. Notably, M = 1, i.e., only considering the current policy when deriving the new policy which
is common in existing MD algorithms, is not always the optimal choice across different decision-making problems. For
example, in the most difficult Leduc poker game, when M = 1, CMD cannot decrease the NashConv, meaning that only
considering the current policy is ineffective in solving this game. By comparison, we determine the default values of M and
w for different games, which are given in Table 7 and will be fixed in other experiments.

B Kuhn-A B Kuhn-B B Goofspiel-S s TinyHanabi-A o TinyHanabi-B

,  TinyHanabi-C 5 Goofspiel s Bargaining

) Battleship , MCCKuhn-A ,  MCCKuhn-B , MCCGoofspiel

10t
10°F
10°F
10
10° 0 ") " 0 ") "

10 10 10 10 10 10

10 0 10"
——(1,001) — (1,0.05) —— (3,0.01) (3,0.05) —— (5,0.01) (5, 0.05)

Figure 10. Experimental results for the combinations of (M, u1). The first 6 figures correspond to single-agent and cooperative categories
where the y-axis is OptGap. The rest figures correspond to other categories where the y-axis is NashConv. For all the figures, the z-axis is
the number of iterations.
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F.3. Performance w.r.t. the Number of Joint Actions

In Figure 11, we plot the performance of different methods with respect to the number of joint actions involved in each
iteration. As both MD-type and CFR-type algorithms will traverse the whole game tree, the number of joint actions for
a given joint policy is the same. Therefore, in the figure, we only need to change the scale of the z-axis for the CMD by
multiplying the constant D (the number of joint policies evaluated at each iteration), while keeping the scales of other
methods unchanged. We note that as D is small in our experiments (D = 5, i.e., sample 5 candidate joint policies), the
conclusions in terms of the number of iterations presented in the main text still hold in terms of the number of joint actions.

As discussed in Section 8, one of the future directions of our work would be the development of a more efficient method for
updating the «, e.g., a method that only needs to sample one candidate (in this case, the number of joint actions will be
the same for both CMD and other baselines). Nevertheless, compared to baseline MD and CFR-type algorithms, CMD
provides a feasible way to study different solution concepts and evaluation measures, though, in the current version, it
requires evaluating multiple candidates at each iteration.

B Kuhn-A B Kuhn-B B Goofspiel-S o TinyHanabi-A 0 TinyHanabi-B

MCCKuhn-B

) TradeComm 4 Battleship . MCCKuhn-A )

10t
10°F
10°F
10
-5 1 1 1 1
10 10
10° 100 10 10 10 10*

MMD-EU —— CFR CFR+

Figure 11. Performance of different methods w.r.t. the number of joint actions. The first 6 figures correspond to single-agent and
cooperative categories where the y-axis is OptGap. The rest figures correspond to other categories where the y-axis is NashConv. For all
the figures, the x-axis is the number of iterations.
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F.4. Different Heuristic Strategies for Adjusting o in GMD

In the main text, the baseline method GMD employs a fixed strategy — a uniform distribution — to determine the value of c.
In this section, we consider two more heuristic strategies: i) “GMD(LD)” denotes that the « is linearly decayed with the
iteration, and ii) “GMD(SR)” denotes that the « is decayed with the iteration in the form of inverse square root function
ar = ﬁ, where k is the k-th iteration. The results are shown in Figure 12. From the results, we can see that different
heuristic strategies can perform differently in different decision-making scenarios; one can beat others in some scenarios
while it can also be beaten by others in other scenarios.

4 Kuhn-A 10 Kuhn-B o Goofspiel-S o TinyHanabi-A 0 TinyHanabi-B
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— CMD —— GMD

Figure 12. Experimental results for GMD with different heuristic strategies for adjusting c. The first 6 figures correspond to single-agent
and cooperative categories where the y-axis is OptGap. The rest figures correspond to other categories where the y-axis is NashConv. For
all the figures, the x-axis is the number of iterations.
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F.5. Different Meta-Controllers

In this section, we investigate the effectiveness of different MCs, and the results are shown in Figure 13. From the results, we
can see that DRS can consistently outperform all the other baseline MCs across almost all of the decision-making problems.
Particularly, in Leduc and MCCKuhn-B, DRS achieves a significantly better convergent performance than other baseline
MCs. Although in MCCKuhn-A, GLD finally converges to a lower NashConv than DRS, it can perform much worse in
other games, e.g., in Battleship, GLD cannot decrease the NashConv, in Leduc and MCCKuhn-B, it only converges to a
high value of NashConv. In other words, GLD cannot consistently work well across all the decision-making categories. In
addition, in most of the games, the RS-type MC:s typically perform better than the GLD-type MCs. We hypothesize that the
RS-type MCs are more efficient in exploring the parameter space as they use more samples (o, and o for each u) to
obtain the final update for the hyper-parameters.

. Kuhn-A B Kuhn-B B Goofspiel-S s TinyHanabi-A 0 TinyHanabi-B
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Figure 13. Experimental results for different MCs. The first 6 figures correspond to single-agent and cooperative categories where the
y-axis is OptGap. The rest figures correspond to other categories where the y-axis is NashConv. For all the figures, the x-axis is the
number of iterations.

Evolution of Hyper-Parameters. The critical observation that supports our proposed DRS is that the value of the evaluation
measure L is extremely small and converges relatively quickly, which makes the original zero-order methods struggle in
adjusting the hyper-parameters as they typically adjust the hyper-parameters directly based on the performance. To further
verify this intuition, we visualize the evolution of the hyper-parameter o over the learning process, which is shown in
Figure 14-Figure 18 (respectively corresponds to single-agent, cooperative, zero-sum, general-sum, and MCC categories).
We use index O to represent the magnet policy and the recent M historical policies are indexed by {1, --- , M }. From the
results, we can see that in all the games except Leduc, the value of o determined by RS almost does not change over the
learning process (the same phenomenon is observed for GLDS as it follows the same idea of RS). In Leduc, this value tends
to decrease to 0 over the learning process. In other words, the regularization is vanishing, which explains why RS and GLDS
cannot decrease the NashConv in this game as adding regularization has been proven important to solve two-player zero-sum
games (Sokota et al., 2023; Liu et al., 2023). In all the games, DRS and DGLDS share some similarities in determining the
value of a and differ from GLD. Nevertheless, the convergence results in Figure 13 show that DRS is the best choice among
them as it can consistently work well across all categories of decision-making problems.

30



Configurable Mirror Descent: Towards a Unification of Decision Making

Figure 14. The evolution of the hyper-parameter values of different MCs in the Single-Agent category. The y-axis is the value of c. The

z-axis is the number of iterations.
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Figure 15. The evolution of the hyper-parameter values of different MCs in the Cooperative category. The y-axis is the value of c. The

x-axis is the number of iterations.
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Kuhn

Figure 16. The evolution of the hyper-parameter values of different MCs in the Zero-Sum category. The y-axis is the value of . The
x-axis is the number of iterations.
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Figure 17. The evolution of the hyper-parameter values of different MCs in the General-Sum category. The y-axis is the value of . The
x-axis is the number of iterations.
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MCCKuhn-A
DRS DGLDS RS GLDS GLD
1.0 1.0 1.0 1.0 1.0
—0 —0 -0 —0 —0
08F —— 1 08F —— 1 08F —— 08F —— 1 08F ——
0.6 0.6f 0.6 0.6 0.6f
04t 04t 04t 04t 04t
02t 02f 02t 02f 02f
0.0 . . 0.0 . . 0.0 . . 0.0 . . 0.0 . :
10° 10° 10° 10° 10° 10* 10° 10° 10 10° 10° 10* 10° 10° 10*
MCCKuhn-B
DRS DGLDS RS GLDS GLD
1.0 1.0 1.0 1.0 1.0
—0 —0 —0 —0 —0
08F —— 08F —— 08F 08F —— 08F ——
0.6} 0.6f 0.6f 0.6} 0.6f
04t 0.4t 04t 041 0.4f
02t 02t 02t 02t 02t
0.0 . . 0.0 . . 0.0 . . 0.0 . . 0.0 . .
10° 10° 10° 10° 10° 10 10° 10° 10 10° 10° 10* 10° 10° 10
MCCGoofspiel
DRS DGLDS RS GLDS GLD
1.0 1.0 1.0 1.0 1.0
—0 —0 -0 —0 —0
08F —— 1 08F —— 1 08F 08F —— 08F ——
0.6} 0.6f 0.6} 0.6} 0.6}
04}t 04f 04}t 0.4}t 04f
02t 02t 02t 02t 02t
0.0 . . 0.0 . . 0.0 . . 0.0 . . 0.0 . .
10° 10° 10° i0° 10° 10* 10° 10° 10 10° 10° 10° 10° 10° 10*

Figure 18. The evolution of the hyper-parameter values of different MCs in the MCC category. The y-axis is the value of . The z-axis is
the number of iterations.
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F.6. Different Bregman Divergences

One of the prominent features of our CMD (GMD) is that it is capable of exploring more possible Bregman divergences.
In this section, we investigate how CMD performs under the different Bregman divergences induced by different convex
functions in Table 2 (the plots for these convex functions are shown in Figure 8).

The experimental results are shown in Figure 19. From the results, we can see that the entropy function z In x is still a good
choice across all the games. Nevertheless, in some games, there exist other convex functions that are better choices. For
example, in Kuhn-A, TinyHanabi-B, TinyHanabi-C, Goofspiel, TradeComm, and MCCGoofspiel, 22 is better than x In x.
Furthermore, in MCCGoofspiel, e” is also better than x In z, which verifies that the KL divergence (z In z) or squared
Euclidean norm (22) could be not always the best choice across different games. On the other hand, even under the entropy
function x In x, our CMD could also outperform MMD-KL in some games such as MCCKuhn-A and MCCKuhn-B.

Kuhn-A 4 Kuhn-B ot Goofspiel-S ,  TinyHanabi-A ot TinyHanabi-B

0 [ I
10° 10° 10*

5 Goofspiel 5 Bargaining
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Figure 19. Experimental results for different Bregman divergences. The first 6 figures correspond to the single-agent and cooperative
categories where the y-axis is OptGap. The rest figures correspond to other categories where the y-axis is NashConv. For all the figures,
the z-axis is the number of iterations.
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F.7. Effectiveness of Magnet

As mentioned in Section D.2, in our experiments, when instantiating CMD, we by default add a magnet policy (the initial
policy) into the policy updating as it has been demonstrated that adding a magnet policy is powerful in solving two-player
zero-sum games (Sokota et al., 2023; Liu et al., 2023). To verify this, we conduct an ablation study where “CMD w/o Mag”
denotes the method that only considers the most recent M historical policies without adding the initial policy.

The experimental results are shown in Figure 20. From the results, we can see that i) For single-agent and cooperative
categories, adding the magnet policy could result in a slightly slower convergence rate; we hypothesize that this may be due
to the fact that the single-agent and cooperative games are relatively simpler than the other games (as shown in Table 6,
the numbers of decision points of single-agent and cooperative games are smaller than the other games). ii) For the other
three categories, adding the magnet policy is necessary for CMD to work consistently well across all the games; though in
MCCGoofspiel, CMD finally converges to a lower NashConv without the magnet, it could perform worse in some other
games, e.g., in Battleship, it finally diverges without the magnet, and in Leduc, MCCKuhn-A, and MCCKuhn-B, it converges
to a high NashConv without the magnet. Nevertheless, as pointed out in Section D.2, this default instance of CMD (GMD)
should not be confused with the original MMD even when M = 1 as the policy updating rule is derived via a numerical
method, instead of relying on the closed-form solution (Sokota et al., 2023).
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Figure 20. Experimental results for the effectiveness of adding the magnet policy. The first 6 figures correspond to single-agent and
cooperative categories where the y-axis is OptGap. The rest figures correspond to other categories where the y-axis is NashConv. For all
the figures, the x-axis is the number of iterations.
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F.8. Different Measures

In this section, we apply our CMD to different solution concepts and evaluation measures (i.e., the desiderata D3 and D4
presented in the Introduction). Note that when running CMD for different evaluation measures, only minimal modifications
are required: changing the MC’s optimization objective £. We first investigate the CCEGap (Moulin & Vial, 1978; Marris
et al., 2021) in Section F.8.1 and then the social welfare (Davis & Whinston, 1962) in Section F.8.2.

F.8.1. CCEGAP

Note that in two-player zero-sum games, NE and CCE can be shown to be payoff equivalent (v. Neumann, 1928). Therefore,
we conduct experiments on the three-player Kuhn and Goofspiel. We follow the same experimental pipeline of OptGap and
NashConv: i) investigating the combination of M and p, ii) investigating different MCs, iii) investigating different Bregman
divergences, and iv) investigating the effectiveness of magnet.

Number of Historical Policies and Smoothing Parameter. We first investigate the influence of the number of previous
policies M and the smoothing parameter i in DRS on the learning performance. Similar to OptGap/NashConv, we consider
M € {1,3,5} and p € {0.01,0.05}, and the results are shown in Figure 21. We can get the same conclusion: different
games may require different M and u. By comparison, we determine their default values which will be fixed in the other
experiments: (M, u) = (3,0.01) for both Kuhn and Goofspiel. All the other hyper-parameter settings are the same as
OptGap/NashConv given in Table 7.
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— (1, 0.05) — (1, 0.05)
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Figure 21. Experimental results for the combinations of (M, u) under the measure CCEGap.

Different Meta-Controllers. Then, we investigate the effectiveness of different MCs. In Figure 22, we present the learning
curves of the performance of different MCs, and in Figure 23, we present the evolution of the value of o determined by
different MCs over the learning process. We can get the same conclusion as OptGap/NashConv: DRS is the best choice
among the 5 MCs. From the evolution of @ we observe that DRS and DGLDS follow two different patterns to determine the
value of a, which is not the case for OptGap/NashConv (see Figure 14—Figure 18). In contrast, we found that since GLD
follows a similar pattern to DRS, it performs on par with or better than DGLDS.
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Figure 22. Experimental results for different meta-controllers under the measure CCEGap.
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Figure 23. Evolution of the hyper-parameters of different MCs. The y-axis is the value of . The x-axis is the number of iterations.

Different Bregman Divergences. Next, we investigate how CMD performs under different Bregman divergences induced
by different convex functions in Table 2, and the results are given in Figure 24. We can get the same conclusions as for
OptGap/NashConv: i) the entropy function ¢ (x) = x In x is still a good choice in different games, ii) there could exist other

convex functions that are better than the entropy function, e.g., ©

2

and e” in Goofspiel, iii) even under the entropy function

Y(x) = zlna, our CMD can converge faster than the SOTA MMD-KL in terms of the number of iterations.
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Figure 24. Experimental results for different Bregman divergences under the measure CCEGap.

Effectiveness of Magnet. Finally, we investigate the effectiveness of adding the magnet policy to the policy updating, and
the results are presented in Figure 25. We can observe a similar phenomenon to NashConv: in Kuhn, CMD converges
remarkably faster (in terms of the number of iterations) than all the other methods, and in Goofspiel, it converges remarkably
faster (in terms of the number of iterations) than all the other methods except the “CMD w/o Mag”. Nevertheless, we can
still conclude that adding the magnet policy is necessary for our CMD.
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Figure 25. Experimental results for the effectiveness of the magnet policy under the measure CCEGap.
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F.8.2. SOCIAL WELFARE

In this section, we apply our methods to the evaluation measure — social welfare (Davis & Whinston, 1962). We conduct
experiments on the general-sum games, and the results are shown in Figure 26. In this experiment, we use the default values
in Table 7 for the hyper-parameters.

From the top line of the figure, we can see that CMD/GMD can empirically achieve competitive or better social welfare
compared to other baselines, demonstrating the effectiveness of our method when considering different measures.

In the median line of the figure, we plot the NashConv when the MC’s objective L is social welfare. We can see that in
Bargaining and TradeComm, the learning still can converge to the approximate NE even though the MC’s objective is social
welfare, not the NashConv. In Battleship, while CMD can get a higher (average) social welfare, the final joint policy is
not an NE as its NashConv cannot converge. In other words, an efficient (in terms of social welfare) joint policy could
not necessarily be an NE. This suggests one of the future directions: how to efficiently learn the NE with maximum social
welfare, which involves the equilibrium selection problem (Harsanyi et al., 1988).

Another intuitive consequence of setting the MC’s optimization objective to social welfare is that the learning could not
converge to the NE or converge slower than the case where the MC’s objective is directly the NashConv. As shown in the
bottom line of the figure, we plot the NashConv of the two cases. In Bargaining and TradeComm, CMD with NashConv as
the MC’s objective can converge to the NE faster than that with SW as the MC’s objective. In Battleship, CMD with SW as
the MC’s objective, though could achieve a higher social welfare, cannot converge the Nash equilibrium.
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Figure 26. Experimental results for the evaluation measure—social welfare.
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F.9. Computational Complexity

In this section, we give some remarks on the computational complexity of different methods. In Section F.9.1, we focus
on the running time of different methods, and in Section F.9.2 we present the memory consumption of different methods.
Note that i) these numbers are obtained under the default values of hyper-parameters (Table 7), and ii) these numbers
are not absolute and depend on the property of the game (see Table 6) and the computational resources used to run the
experiments (see Section F.1); they only provide intuition on the computational complexity of different methods to show
that our GAMEBENCH can satisfy the desiderata DS and D6 mentioned in the Introduction.

F.9.1. RUNNING TIME

The running time of different methods in different games is shown in Table 8. From the results, we can see that in most of
the games, running all the algorithms does not cause a very long running time (the desiderata D5 and D6 presented in the
Introduction), even for our methods where a set of extra operations is required: GMD requires computing the value of the
dual variable via a numerical method and CMD further requires to evaluate multiple candidates of the hyper-parameters.
Notably, we emphasize that: i) Our methods (CMD/GMD) provide the capability of exploring more dimensions of decision
making, though they require extra computational cost (the major limitation of the current version of our methods); ii)
Comparing CMD and GMD, we can see that the major cost comes from evaluating multiple samples. Therefore, as pointed
out in Section 8, we view this as a future direction: developing more computationally efficient hyper-parameter value
updating methods without sacrificing performance. In this regard, other techniques such as Bayesian optimization (Lindauer
et al., 2022) or offline hyper-parameter optimization approaches (Chen et al., 2022) may be required.

Table 8. The running time of one iteration of different methods in different games (second).

Game CFR  CFR+ MIIZILD MIIEVIIJD GMD CMD

) ) DRS RS DGLDS GLDS GLD
Kuhn-A 0.0004 0.0004 0.0003 0.0003 0.0034 0.0372 0.0372 0.0204 0.0204 0.0203
Kuhn-B 0.0004 0.0004 0.0003 0.0003 0.0033 0.0370 0.0365 0.0202 0.0201 0.0202

Goofspiel-S 0.0007 0.0006 0.0004 0.0004 0.0046 0.0491 0.0489 0.0269 0.0275 0.0270

TinyHanabi-A ~ 0.0006 0.0006 0.0004 0.0004 0.0045 0.0474 0.0472 0.0262  0.0268 0.0260
TinyHanabi-B ~ 0.0004 0.0004 0.0003 0.0003 0.0033 0.0366 0.0370 0.0198 0.0192 0.0197
TinyHanabi-C ~ 0.0004 0.0004 0.0003 0.0003 0.0032 0.0364 0.0359 0.0195 0.0195 0.0199

Kuhn 0.0084 0.0082 0.0022 0.0021 0.0267 0.4102 0.4058 0.2273  0.2282 0.2288
Leduc 0.0942 0.0961 0.0422 0.0412 0.5146 6.8897 6.9749 3.8188 3.8116 3.8744
Goofspiel 0.0072  0.0073 0.0014 0.0014 0.0167 0.2879 0.2899 0.1636  0.1610 0.1625
Bargaining 0.0279 0.0273 0.0130 0.0116 0.1093 1.5311 1.5308 0.8428  0.8579 0.8516
TradeComm 0.0028 0.0029 0.0011 0.0010 0.0121 0.1704 0.1699  0.0957 0.0942 0.0939
Battleship 0.0245 0.0248 0.0097 0.0094 0.1125 1.5570 1.5771 0.8833  0.8774 0.8835

MCCKuhn-A 0.0083 0.0084 0.0021 0.0021 0.0264 6.9054 6.8377 4.0453 4.1461 4.1034
MCCKuhn-B 0.0080 0.0083 0.0021 0.0021 0.0260 6.8100 6.7847 4.1047 4.0944 4.1104
MCCGoofspiel 0.0070 0.0073 0.0014 0.0014 0.0167 5.3541 5.3852 3.1817 3.1945 3.1836
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F.9.2. MEMORY USAGE

The memory usage of different methods in different games is provided in Table 9. From the results, we can see that running
all the algorithms does not cause much memory consumption, which shows that our GAMEBENCH is academic-friendly.

Table 9. The memory usage of different methods in different games (MB).

Game CRR  CRR+ o0 VR GMD CMD

- - DRS RS DGLDS GLDS GLD
Kuhn-A 08750 09805 03711 03750 09492 10352 10859 03750 03750 0.3750
Kuhn-B 08672 0.8672 04297 03750 07461 1.1289 10352 03750 03750 0.3164

Goofspiel-S 1.1875 1.2969 1.2617 1.2539 1.2578 1.2578 1.2578 1.6992  1.6953 1.6992

TinyHanabi-A  1.0352 1.0156 0.4805 0.4258 0.4883 1.0312 1.1836  0.4453  0.4297 0.4883
TinyHanabi-B ~ 0.9922 1.0898 0.4922 0.4844 0.4336 0.4922 0.5430 0.4922 0.4297 0.4922
TinyHanabi-C =~ 0.9805 0.9922 0.4336 0.4297 0.4336 0.4922 0.4336 0.4336 0.4336 0.4336

Kuhn 1.9961 2.0078 3.0352 3.1367 3.5586 3.7734 3.7227 3.5156  3.5352 3.5273
Leduc 26.262 26.344 51.664 52.465 58273 59.063 58.555 52.688 51.949 51.359
Goofspiel 24844 24297 3.5039 3.4961 4.3555 4.3359 43047 4.0391 4.0430 4.0898
Bargaining 10.633 10.578 24.816 24.852 35.129 35422 35.020 31941 32.344 31.781
TradeComm 1.4961 15430 2.0156 2.0703 2.0664 2.0078 2.0117 22461 22461 2.3633
Battleship 6.9102 6.9023 13.539 13.422 13.543 13.543 13484 12.098 12.148 12.332

MCCKuhn-A 2.5742 25195 2.0312 2.0273 2.5586 2.6719 2.7266 2.3047 2.2930 2.2930
MCCKuhn-B 24688 25703 2.0273 19648 1.9727 2.6562 27617 22383 22305 2.1797
MCCGoofspiel 2.7500 2.7500 3.0078 3.0820 3.0781 3.0195 3.1289 2.8203 2.8047 2.8672
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