
 

Decision Making in Team-Adversary Games with Combinatorial
Action Space

Shuxin Li1, Youzhi Zhang2 ✉, Xinrun Wang1, Wanqi Xue1, and Bo An1

 

ABSTRACT
The  team-adversary  game  simulates  many  real-world  scenarios  in  which  a  team  of  agents  competes  cooperatively  against  an
adversary.  However,  decision-making  in  this  type  of  game  is  a  big  challenge  since  the  joint  action  space  of  the  team  is
combinatorial and exponentially related to the number of team members. It also hampers the existing equilibrium finding algorithms
from solving team-adversary games efficiently. To solve this issue caused by the combinatorial action space, we propose a novel
framework  based  on  Counterfactual  Regret  Minimization  (CFR)  framework:  CFR-MIX.  Firstly,  we  propose  a  new  strategy
representation  to  replace  the  traditional  joint  action  strategy  by  using  the  individual  action  strategies  of  all  the  team  members,
which can significantly  reduce the strategy space.  To maintain  the cooperation between team members,  a  strategy consistency
relationship is proposed. Then, we transform the consistency relationship of the strategy to the regret consistency for computing
the  equilibrium  strategy  with  the  new  strategy  representation  under  the  CFR  framework.  To  guarantee  the  regret  consistency
relationship,  a product-form decomposition method over cumulative regret  values is proposed. To implement this decomposition
method, our CFR-MIX framework employs a mixing layer under the CFR framework to get the final decision strategy for the team,
i.e.,  the Nash equilibrium strategy.  Finally,  we conduct  experiments  on games in  different  domains.  Extensive results  show that
CFR-MIX significantly outperforms state-of-the-art algorithms. We hope it can help the team make decisions in large-scale team-
adversary games.

KEYWORDS
decision making; team-adversary games; Nash equilibrium; Counterfactual Regret Minimization (CFR)

 

E xtensive-form games have attracted much attention due to
their  capability  to  represent  multiple  agents,  imperfect
information,  and  stochastic  events.  For  two-player  zero-

sum imperfect-information extensive-form games, there are many
algorithms  for  computing  Nash  Equilibria  (NEs),  such  as  linear
programming  algorithms[1],  double  oracle  algorithms[2, 3],  and
Counterfactual  Regret  Minimization  (CFR)[4].  These  algorithms
have  achieved  significant  accomplishments  in  solving  extensive-
form game problems. Double oracle algorithm and its variants[2, 3]

have  been  applied  to  solve  real-world  attacker-defender  security
games. CFR and its variants have achieved notable breakthroughs
in  solving  large-scale  poker  games.  For  example,  CFR+[5] has
successfully  tackled  heads-up  limit  hold’em  poker  games,  while
Libratus[6] and  DeepStack[7] have  demonstrated  exceptional
performance in solving heads-up no-limit hold’em poker games.

As  one  of  the  most  widely  used  algorithms  for  solving  two-
player  zero-sum  imperfect-information  extensive-form  games,
CFR approximates a Nash Equilibrium (NE) through repeated self-
play  between  two  regret-minimizing  algorithms.  The  CFR
algorithm  requires  traversal  of  the  entire  game  tree,  making  it
challenging to directly apply to large-scale games. To address this
challenge,  several  sampling-based  CFR  variants[8, 9] have  been
proposed,  in  which  only  a  subset  of  the  game  tree  is  traversed
during  each  iteration.  Moreover,  the  neural  network’s  strong
function approximation capabilities have also yielded benefits  for

the  CFR  algorithm  in  solving  large-scale  games.  Several  deep-
based  CFR  variants,  including  Deep  CFR[10],  Single  Deep  CFR[11],
and  Double  Neural  CFR[12],  have  employed  neural  networks  to
replace the traditional tabular-form representation.

n
m

mn

In this paper, we focus on solving team-adversary games, which
can be seen as a special case of a two-player zero-sum imperfect-
information  extensive-form  game.  This  game  entails  a  team  of
agents playing in a cooperative manner against an adversary, with
every  agent  in  the  team  sharing  the  same  utility  function.  The
game  model  can  capture  numerous  real-world  scenarios,
including scenarios where multiple police officers must coordinate
with one another to apprehend an attacker[13].  Hence, solving this
type  of  game  model  is  of  utmost  importance.  However,  existing
algorithms  cannot  be  directly  applied  to  solve  this  type  of  game
model since the joint action space of the team grows exponentially
with  the  number  of  team  members  due  to  the  combinatorial
nature of the problem. To describe the exponential combinatorial
action  space  problem  in  the  team-adversary  game  more
specifically, we assume that the number of team members is  and
the  action number  of  every  team member  is .  In  this  case,  the
joint  action  space  of  the  team would  be  of  size .  CFR and  its
sampling-based  variants  utilize  a  tabular-form  representation  to
depict  the  strategy  based  on  the  action  space.  Due  to  the
exponential growth of the joint action strategy, solving the team-
adversary  game  using  these  algorithms  is  impractical  as  the 

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
2 Centre  for  Artificial  Intelligence  and  Robotics,  Hong  Kong  Institute  of  Science  &  Innovation,  Chinese  Academy  of  Sciences,  Hong  Kong
999077, China
Address correspondence to Youzhi Zhang, youzhi.zhang@cair-cas.org.hk
A short version of this work was published in Proceedings of the 30th International Joint Conference on Artificial Intelligence.
© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.26599/AIR.2023.9150023 CAAI Artificial Intelligence Research

 

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023 1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26599/AIR.2023.9150023


limited  memory  cannot  accommodate  such  a  representation.  To
circumvent  the  memory issue,  we may leverage  deep-based CFR
algorithms  as  they  use  a  neural  network  to  replace  the  tabular-
form representation. However, directly applying these deep-based
CFR  algorithms  to  solve  the  team-adversary  game  is  also  not
feasible  since  training  a  strategy  network  over  the  exponentially
growing  joint  action  space  is  inefficient.  An alternative  approach
to sidestep the exponential combinatorial action space problem is
to treat each team member as an individual agent, enabling them
to  compute  their  policy  autonomously.  However,  this  approach
fails  to  facilitate  collaboration  among  team  members,  as  it  treats
the team-adversary game as a multiplayer game instead of a two-
player  game.  Furthermore,  there  is  no  theoretical  guarantee  to
converge to the equilibrium strategy in multiplayer games[14].

The  exponential  combinatorial  action space  problem in  team-
adversary  games  limits  the  efficiency  of  existing  algorithms  in
solving these games.  To this end, we propose a novel framework
based on the CFR framework, CFR-MIX, to efficiently solve team-
adversary  games  with  combinatorial  action  space.  Our
contributions can be summarized as follows:
● We  introduce  an  innovative  strategy  representation  that

dramatically  reduces  the  joint  action  strategy  space.  Drawing
inspiration  from  the  paradigm  of  Centralized  Training  with
Decentralized  Execution  (CTDE)[15] prevalent  in  multi-agent
reinforcement  learning,  our  new  representation  employs
individual strategies for each team member to represent the joint
action  strategy.  It  not  only  simplifies  the  computational
complexity but also enables more effective and scalable solutions.
● To  ensure  the  NE  strategy  profile  remains  unchanged,  we

define a strategy consistency relationship between the new strategy
representation  and  the  traditional  one.  This  relationship  is  then
transformed  into  a  consistency  relationship  between  cumulative
regret  values,  allowing  us  to  compute  the  NE  using  the  new
strategy representation within the CFR framework. It ensures that
the  new  strategy  representation  is  both  compatible  and  effective
when integrated into existing CFR-based solutions.
● To  enforce  the  regret  consistency  relationship,  we  design  a

product-form  decomposition  method  over  cumulative  regret
values. This method is then implemented through a mixing layer
within  the  CFR  framework,  culminating  in  the  creation  of  our
CFR-MIX  algorithm.  To  further  improve  the  performance,  we
employ  the  parameter-sharing  technique  among  all  team
members,  which  substantially  reduces  the  model’s  complexity
without compromising its effectiveness.

Finally,  we  assess  the  performance  of  CFR-MIX  through
empirical  evaluations  across  multiple  game  domains.  Our
experimental findings clearly indicate that CFR-MIX significantly
outperforms  existing  state-of-the-art  algorithms,  thereby
establishing its efficacy and superiority in tackling large-scale team-
adversary games. 

1    Preliminary
 

1.1    Imperfect-information extensive-form game

N,H,A,P,I ,u N= {1,2, ...,n}
H

/0 H
H H
Z H

Z⊂H A(h) = {a : (h,a) ∈H}

An imperfect-information  Extensive-Form Game (EFG)[1] can  be
denoted  as  a  tuple  ( ),  in  which 
represents  the  set  of  players  and  is  the  collection  of  histories,
encompassing  all  potential  sequences  of  actions.  The  empty
sequence  within  denotes  the  root  node  of  a  game  tree  and
every prefix of a sequence with  also belongs to . The set of the
terminal  histories,  denoted  as ,  is  a  subset  of  the  history ,
expressed as .  represents the set of

h ∈H\Z
P
P(h) 7→ N∪{c} c

P(h)
h P(h) = c

h I
Ii ∈I

i
i ∈ N

Ii Ii ∈Ii

i
h1,h2 ∈ Ii P(h1) = P(h2)

A(h1) = A(h2) A(Ii) P(Ii)
A(h) P(h) h Ii

i ∈ N u
ui : Z→ R

∑
i

ui(z) = 0

∀z ∈ Z

available actions at any non-terminal history . The player
function,  represented by ,  maps  each non-terminal  history  to  a
player,  as  expressed  by  in  which  denotes  the
“chance  player”,  which  represents  stochastic  events  beyond  the
players’ control.  In  this  context,  represents  the  player  who
takes  an  action  at  the  history ,  and  if  then  chance
determines the action taken at history .  represents the set of
the information set. The information set  forms a partition
over  the  set  of  histories  where  takes  action,  such  that  player

 cannot  distinguish  these  histories  within  the  same
information  set .  Additionally,  each  information  set 
corresponds  to  a  single  decision-making  point  for  player .
Formally,  for  any ,  the  conditions  and

 hold. As a result, we can employ  and  to
denote  and  for any history  within . For each player,

,  the  utility  function,  represented  by ,  is  a  mapping
. A game is referred to as a zero-sum game if the sum

of the payoffs  for  all  players  equals  zero,  denoted as 
for .

σ i i
i

A(Ii) Sσi
i σ
σ = (σ1,σ2, ...,σN) σ i

i
σ−i σ σ i

h
σ πσ(h)

σ i

ui(σ) = ∑
h∈Z

πσ(h)ui(h) σ−i
BR(σ−i) i

ui(BR(σ−i),σ−i) = max
σi

ui(σ i,σ−i)

σ∗

The  behavior  strategy  for  player  is  a  function  that  maps
every information set of player  to a probability distribution over
the  available  actions, .  We  use  to  represent  the  set  of
strategies for player . A strategy profile  is a tuple consisting of
all  players’ strategies ,  where  represents  the
strategy for player . For simplicity in subsequent descriptions, we
use  the  term  to  refer  to  all  the  strategies  in  except  for .
Furthermore,  we  denote  the  reaching  probability  of  history 
when  players  choose  actions  according  to  as .  If  given  a
strategy profile ,  the utility for player  is the expected payoff of
all  resulting  terminal  histories,  which  can  be  expressed  as

.  A  best  response  to  the  strategy  is  the

strategy  for player  that maximizes their expected payoff,
i.e., .  The  NE[16] is  the  canonical
solution concept for imperfect-information extensive-form games,
defined as a strategy profile such that no player can increase their
expected utility by unilaterally switching to a different strategy. As
a result, in the NE, each player plays their best response. Formally,
an NE is a strategy profile  that satisfies

ui(σ∗) = max
σi∈Sσi

ui(σ i,σ∗−i)⩾ ui(σ i,σ∗−i), ∀σ i ∈ Sσi , i ∈ N.

ε
σ ′

Correspondingly,  an -NE  is  an  approximation  of  an  NE,
which is a strategy profile  that satisfies

max
σi∈Sσi

ui(σ i,σ ′−i)−ui(σ ′)⩽ ε, ∀i ∈ N.

σ
e(σ) = u1(σ1,BR(σ1))+

u2(BR(σ2),σ2) σ
e(σ) = 0 σ

In two-player zero-sum games, the exploitability can be used to
measure  the  distance  between  a  strategy  profile  and  the  NE
strategy  which  can  be  defined  as 

.  It  measures  how much  loses  to  the  worst-case
opponent and when ,  is the NE strategy profile. 

1.2    Team-adversary game

N,H,A,P,I ,u

The  main  objective  of  this  paper  is  to  solve  the  team-adversary
games,  which  are  a  special  class  of  imperfect-information
extensive-form  games.  To  establish  a  solid  understanding  of  the
problem domain, we offer a formal definition that closely mirrors
the  one  used  for  imperfect-information  extensive-form  games.
Specifically,  a  team-adversary  game  can  also  be  represented  by  a
tuple ( ).

MIn team-adversary games, there are two players: a team  and

CAAI Artificial Intelligence Research

 

2 CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023



V N= {M,V}
H P I

h ∈H\Z
AV(h) = {a : (h,a) ∈H}
M

M1,M2, ...,Mn

M h
AM(h) =×i∈RAMi(h) AMi(h)

Mi h

uM(z) =−uV(z) ∀z ∈ Z

an  adversary ,  represented  as .  The  definitions  of
history , the player function  and information set  for team-
adversary  games  are  identical  to  those  used  for  the  imperfect-
information extensive-form game. The set of available actions for
the adversary at any non-terminal history  is defined as

. It is important to note that in the team
 of  the  team-adversary  game,  there  can  be  multiple  agents,

represented  as .  Accordingly,  the  set  of  available
actions for the team  at any non-terminal history  is defined as

 where  represents  the  set  of  available
actions for the team member  at history . The team-adversary
game is considered a strictly competitive game, which means that
it is a zero-sum game. Formally,  for . The
main  focus  of  this  paper  is  to  develop  optimal  decision-making
strategies  for  both  players  in  team-adversary  games.  To  achieve
this,  we  adopt  the  Nash  equilibrium  strategy  as  the  solution
concept for these games and aim to compute the NE strategy for
both the team and the adversary. 

1.3    Related work
The first computational study on extensive-form adversarial team
games  was  conducted  by  Celli  and  Gatti[17].  These  games  are
sequential,  zero-sum  games,  and  involve  a  team  of  players  who
share  the  same  utility  function,  and  face  an  adversary.  They
defined  three  different  scenarios  based  on  the  communication
capabilities  of  the  team.  For  each  scenario,  they  introduced
different  equilibrium  solution  concepts,  such  as  Team-Maxmin
Equilibrium (TME),  TMECom, and TMECor.  Additionally,  they
proposed  an  equilibrium-finding  algorithm  based  on  a  classical
column-generation  approach.  Subsequent  research  has  primarily
focused on computing TMECom or TMECor in larger games by
enhancing  algorithms  based  on  column-generation  or  linear
programming techniques[18–20]. However, our team-adversary game
slightly differs from the extensive-form adversarial team game, as
we consider  the  team as  a  single  player,  while  the  players  within
the team of the extensive-form adversarial team game are treated
as  individual  players.  Moreover,  these  existing algorithms cannot
scale  up  to  the  game  with  many  team  players  due  to  the
computational  limitation.  To  solve  large-scale  team-adversary
games,  we  resort  to  algorithms  used  for  solving  large-scale
imperfect-information  extensive-form  games.  Consequently,  in
this  paper,  we  adopt  the  CFR  algorithm  as  our  base  framework.
Next, we will provide an overview of the CFR algorithm.

σt
i i t

h
σ ui(σ,h)

i
σ i a h

ui(σ,h ·a) i

ui(σ,h) = ∑
z∈Z

πσ(h,z)ui(z) ui(σ,h ·a) = ∑
z∈Z

πσ(h ·a,
z)ui(z)

CFR[4] is  one  of  the  most  popular  algorithms  for  solving  large
imperfect-information games. For the sake of description, we use

 to represent the strategy used by player  on iteration . Given
that the history  is reached if all players play according to strategy

 from  that  point  on,  then  we  use  to  represent  the
expected utility of player . Otherwise, if all players play according
to strategy  except that player  selects action  in the history ,
then  we  use  present  the  expected  utility  of  player .
Formally,  and 

.

I uσ
i (I) I

i

i

In  the  CFR  algorithm,  there  is  a  special  definition  called
counterfactual  value.  The  counterfactual  value  of  information set
, ,  is  defined as the expected value of the information set 

given  that  player  tries  to  reach  it.  This  value  is  the  weighted
average  of  the  value  of  each  history  in  an  information  set.  The
weight is proportional to the contribution of all players other than
 to reach each history. Formally,

uσ
i (I) = ∑

h∈I

πσ
−i(h)∑

z∈Z

πσ(h,z)ui(z).

a I
uσ
i (I,a)
The  counterfactual  value  of  action  in  information  set ,

, is defined as follows:

uσ
i (I,a) = ∑

h∈I

πσ
−i(h)∑

z∈Z

πσ(h ·a,z)ui(z),∀a ∈ A(Ii).

a
I rt(I,a) =

uσt
P(I)(I,a)−uσt

P(I)(I) T

RT(I,a) =
T

∑
t=1

rt(I,a)

Then  we  can  define  instantaneous  regret  based  on  the
definition of counterfactual value. For an action  in information
set ,  the  instantaneous  regret  value  is  defined  as 

 and  the  cumulative  regret  on  iteration  is

defined as .
t

σt

t+ 1 σt+1

t+ 1 i a ∈ A(I)

In  iteration ,  the  game  tree  is  fully  traversed  according  to
strategy  to compute instantaneous regret value and cumulative
regret  value  for  every  information  set.  Then,  players  use  regret-
matching to pick a distribution over actions in the information set
in proportion to the positive cumulative regret on those actions as
the traverse strategy in iteration , .  Formally,  on iteration

, player  selects actions  according to probability

σt+1(I,a) =


Rt

+(I,a)
∑

b∈A(I)

Rt
+(I,b)

, if ∑
b∈A(I)

Rt
+(I,b)> 0;

1
|A(I)|

, otherwise;

Rt
+(I,a) = max(Rt(I,a),0)

T

where  because  we  often  mostly
concern  about  cumulative  regret  when  it  is  positive.  If  a  player
plays  according  to  CFR  algorithm  in  every  iteration,  then  on
iteration ,

RT(I)⩽ Δi

√
|Ai|
√
T,

Δi = max
z

ui(z)−min
z
ui(z) iwhere  is the range of utility of player .

Moreover,

RT
i ⩽ ∑

I∈Ii

RT(I)⩽ |Ii|Δi

√
|Ai|
√
T.

T→+∞
RT

i

T
→ 0

RT
i

T
⩽ ε

(σT
1 ,σ

T
2 ) 2ε

Therefore, as , average regret value . Specially,
in  two-player  zero-sum  imperfect-information  extensive-form

games,  if  both players’ average regret ,  then their  average
strategies  over  all  strategies  of  all  iterations  form  a -
equilibrium[21].

It  is  time-consuming for CFR to traverse the full  game tree in
solving  large-scale  imperfect-information  extensive-form  games.
Therefore,  to  solve  large-scale  imperfect-information  extensive-
form games, some sampling-based CFR algorithms are proposed,
such as  external  sampling,  outcome sampling[8],  probe sampling[9]

and  other  reduce  variance  sampling  algorithms[22, 23].  These
sampling-based CFR algorithms only traverse a  subset  of  the full
game tree. For example, the external sampling algorithm traverses
all actions of one player every iteration, and the outcome sampling
algorithm traverses one action for each player every iteration. The
outcome  sampling  algorithm  runs  faster  than  the  external
sampling algorithm, however, the external sampling algorithm has
a  lower  variance  than  the  outcome  sampling  algorithm.
Compared  to  the  outcome  sampling  algorithm,  the  probe
sampling  algorithm  attempts  to  reduce  variance  by  replacing
“zeroed-out” counterfactual  values  of  non-sampled  actions  with
closer estimates of the true counterfactual values.  Here, we adopt
the probe sampling algorithm to traverse the game tree to collect

Decision Making in Team-Adversary Games with Combinatorial Action Space

 

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023 3



regret value. Recently, the deep neural network has achieved many
achievements  in  many  research  areas  and  its  good  capability  in
function approximation property has brought benefits to the CFR
algorithm. Some deep-based CFR variants are proposed to replace
the  tabular-form  representation  with  neural  networks.  In  this
paper, we only focus on deep-based CFR algorithms. 

2    Strategy Representation
The  main  focus  of  this  paper  is  solving  team-adversary  games,
where a team collaborates to play against an adversary. The joint
action set for the team is constructed by combining the actions of
all team members, which leads to an exponentially growing action
space with the number of  team players.  This  large combinatorial
action space poses a big challenge for existing algorithms to solve
team-adversary  games  efficiently.  To  address  this  challenge,  we
propose  a  novel  strategy  representation  that  can  significantly
reduce the strategy space. 

2.1    Individual strategy representation

M

fM = (σ1,σ2, ...,σn) σ i

Mi

σ = (σV, fM) = (σV,σ1, ...,σn)

Mi

uMi(σ) = uM(σ) = ∑
h∈Z

uM(h)πσ(h)

Here,  we  introduce  the  proposed  novel  strategy  representation,
individual  strategy  representation,  which  uses  the  individual
strategies of all the team members to represent the team’s strategy.
Note  that  all  team  members  share  the  same  information  sets  of
the  team ,  i.e.,  all  team  members  share  the  same  decision-
making points. Formally, the individual strategy representation of
the  team  is  defined  by ,  where  is  the
individual  strategy  of  team  member .  We  can  find  that  the
space  of  individual  strategy  representation  is  linear  with  the
number of team members since the individual action space of all
the  team  members  is  linear  with  the  number  of  team  members.
Given  a  strategy  profile ,  every  team
member  shares  the  same  expected  payoff  of  the  team,  i.e.,

.
 

2.2    Strategy consistency
The individual strategy representation can significantly reduce the
strategy  space  since  it  grows  linear  with  the  number  of  team
members. However, it is important to note that it is not capable of
fully representing the team’s entire joint action strategy space. To
clarify  the  relationship  between  the  individual  strategy
representation and traditional joint action strategy representation,
we  propose  a  consistency  relationship  which  can  be  defined  as
follows,

σM(I,a) = σ1(I,a1)σ2(I,a2) · · ·σn(I,an) (1)

a= (a1,a2, . . . ,an) σM(·)
σ i(·)

Mi

σM(·)
σ i(·)

where ,  denotes  the  probability  of  the
team’s joint action, and  denotes the probability of individual
action  for  the  team  member .  When  given  a  joint  action
strategy  over the joint action space for one information set,
we can get the individual strategy for each player  by solving
the following nonlinear equation set,

σM(I,a1) =
n

∏
i=1

σ i(I,ai1),

...

σM(I,aL) =
n

∏
i=1

σ i(I,aiL),

∀aj aj = (a1j,a2j, ...,anj),

Lwhere  is  the number of  joint actions.  Clearly,  this  equation set

does  not  always  have  a  unique  solution,  which  means  that  not
every  joint  action  strategy  can  be  decomposed  into  individual
action strategies following the strategy consistency.

S S1
S2

S2
{a1,a2}

{b1,b2}
σ= (0.5,0,0,0.5) {(a1,b1),(a1,b2),

(a2,b1),(a2,b2)}

According  to  the  consistency  relationship,  the  entire  joint
action  strategy  space  ( )  can  be  divided  into  two  spaces: ,  in
which  strategies  satisfy  the  consistency  relationship,  and ,  in
which  strategies  do  not  satisfy  the  consistency  relationship,  as
shown in Fig. 1. To better understand this division, we provide an
example  of  the  strategy  in .  Consider  a  game  with  two  team
members,  where  the  action  set  for  each  member  is  and

, respectively. Suppose we are given a joint action strategy
 based  on  the  joint  action  set 

.  However,  we  cannot  obtain  the  corresponding
individual  strategy  representation  satisfying  the  consistency
relationship (Eq. (1)).

(S,SV) SV

S1 (S1,SV)

(S,SV)

Based  on Fig.  1,  the  strategy  space  for  a  two-player  team-
adversary game can be represented by the tuple , where 
denotes  the  strategy  space  of  the  adversary.  When  using  the
individual  strategy  representation  proposed  in  this  paper,  the
team’s  strategy space  would be .  In  this  case,  the  tuple 
also  forms  the  strategy  space  for  a  two-player  team-adversary
game with the consistency relationship satisfied. According to the
location of the team’s NE strategy in a two-player team-adversary
game  with  the  strategy  space ,  there  can  be  two  different
outcomes.

(S,SV) S1
(S1,SV)

(S,SV)

{a1,a2} {b1,b2}
{c1,c2}

((a2,b1),c1) ((a2,b2),c1)

σ = (0,0,p, 1−p)
{(a1,b1),(a1,b2),(a2,b1),(a2,b2)} p ∈ [0, 1]

σ1 = (0, 1) {a1,a2} σ2 = (p, 1−p)
{b1,b2}

1. If the team’s NE strategy for the game with the strategy space
 is  located  in  the  strategy  space ,  then  the  team’s  NE

strategy  of  the  game  with  the  strategy  space  equals  the
team’s  NE  strategy  of  the  game  with  the  strategy  space .
Theorem 1 formally describes this outcome. To provide a clearer
understanding,  we  also  present  a  toy  example.  Consider  a  game
with  two  team  members,  where  the  action  set  for  each  team
member is  and , respectively, and the action set for
the  adversary  is .  Here,  we  consider  a  normal-form game
where the matrix is represented in Table 1. We can find the pure
NE  strategy  of  the  game  to  be  or .
Accordingly, the mixed NE strategy for the team would be a joint
action  strategy  over  the  joint  action  set

,  where .  According  to
the  strategy  consistency,  we  can  decompose  this  joint  action
strategy  into  individual  action  strategies  for  each  team  member,
i.e.,  over the action set  and  over
the action set .

Theorem 1　Under the new strategy representation, the Nash
Equilibrium  strategy  profile  between  the  adversary  and  the  team
keeps unchanged if Eq. (1) holds for the team’s Nash equilibrium
strategy.
 

All joint action
strategies space

Joint action strategies can be
decomposed into individual action
strategies following consistency
relationship equation.S

S2

S1

Fig. 1    Relationship  between  joint  action  strategy  space  and  individual
action strategy space.
 

Table 1    Utility matrix.

Action (a1, b1) (a1, b2) (a2, b1) (a2, b2)

c1 1, −1 1, −1 0, 0 0, 0

c2 −1, 1 −1, 1 −2, 2 −2, 2

CAAI Artificial Intelligence Research

 

4 CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023



σ = (σV,σM)

σ i(I,ai) i
Proof　 Let  be  the  Nash  equilibrium  strategy

profile and  be the strategy of agent . We can know that

uV(σ)⩾ max
σ′V∈SσV

uV(σ ′V,σM),uM(σ)⩾ max
σ′M∈SσM

uV(σV,σ′M).

σM = σ1σ2 · · ·σn

From  the  consistency  relationship  between  the  individual
action strategy and the joint action strategy, we can know that the
team’s  equilibrium  strategy  satisfies  the  consistency  relationship.
Therefore, . Then, we have

uV(σ)⩾ max
σ′V∈SσV

uV(σ ′V,σ1σ2 · · ·σn),

uM(σ)⩾ max
σ′i∈Sσi

uV(σV,σ ′1σ ′2 · · ·σ ′n).

σ = (σV,σM)

σ = (σV,σ1σ2 · · ·σn)
Therefore, if  is a Nash equilibrium strategy profile,

then  is  the  same  as  the  Nash  equilibrium
strategy profile and vice versa. □

(S,SV) S2
(S1,SV)

(S,SV)

(S,SV)
(S,SV)

(S1,SV)

(S,SV)

2.  If  the  team’s  NE  strategy  for  the  game  with  strategy  space
 is located within the  space, then the team’s NE strategy

for the game with strategy space  will differ from that in the
game with strategy space . However, it will be a special type
of  TME  strategy  that  adheres  to  the  consistency  relationship,  as
defined for the TME strategy. In this scenario, the team may incur
a  utility  loss  compared  to  their  NE reward  in  the  game with  the

 strategy  space.  This  is  because,  in  the  game  with  strategy
space ,  team  members  can  be  considered  to  always
communicate and coordinate their  actions,  whereas,  in the game
with strategy space , such communication and joint action
are restricted due to strategy consistency requirements. In essence,
the utility of the team’s joint strategy is not always lower than the
utility of the team’s strategy which can be decomposed. Although
we did not provide a solid bound on the potential utility lost here,
experimental  results  show  that  solving  the  game  under  the
assumption  that  all  joint  strategies  can  be  decomposed  yields
better strategies more quickly than solving the large game with the
joint  strategy  space  (baselines).  The  reason  could  be  that
the  exponential  action  space  significantly  influences  the
computation process of the joint action strategy. 

3    CFR-MIX
We move on to introduce our novel algorithm, CFR-MIX, based
on  the  CFR  framework,  to  compute  an  NE  for  team-adversary
games  with  consistency  relationship  holding.  To achieve  this,  we
first transform the consistency relationship between strategies into
the  consistency  relationship  between  accumulative  regret  values.
We  then  propose  a  novel  decomposition  method  based  on  the
consistency  relationship  between  accumulative  regret  values.  To
implement  the  decomposition  method,  we  introduce  a  mixing
layer  to  construct  CFR-MIX.  Additionally,  we  provide  a
theoretical analysis of the algorithm. 

3.1    Regret consistency
As  discussed  in  the  preceding  section,  the  CFR-based  algorithm
employs  regret-matching  to  compute  the  strategy  for  the
subsequent  iteration  according  to  accumulated  regret  values.
Consequently,  the  accumulated  regret  value  of  each  action
influences  the  strategy,  specifically,  the  probability  of  choosing
each  action.  Furthermore,  in  order  to  get  the  individual  strategy
for  each  team  member,  it  is  necessary  to  explicitly  know  the
accumulated regret values of that member’s actions. However, we
can only obtain the accumulated regret values of the team’s joint

actions, as we can only access the utility for the team’s joint action
while traversing the game tree. Hence, it  is essential to derive the
accumulated  regret  values  of  each  team  member’s  actions  based
on  the  accumulated  regret  values  of  the  team’s  joint  actions.  To
achieve this goal, we aim to propose a decomposition method for
the accumulated regret values of the team’s joint actions.

∑
∀a′
Rtot(I,a′)+ > 0 ∑

b∈Ai(I)

Ri(I,b)+ > 0

Prior  to  presenting  the  proposed  decomposition  method,  we
first  introduce  the  consistency  relationship  between  accumulated
regret  values  of  the  team’s  joint  actions  and  those  of  the  team
member’s  actions.  This  relationship  is  derived  from  the
consistency  relationship  between  strategies.  Here,  we  present  the

derive  process.  When  and ,
then the consistency relationship would be derived as follows:

σM(I,a) = σ1(I,a1)σ2(I,a2) · · ·σn(I,an) =
n

∏
i=1

σ i(I,ai) (2)

Rtot(I,a)+
∑
∀a′
Rtot(I,a′)+

=
n

∏
i=1

 Ri(I,ai)+

∑
b∈Ai(I)

Ri(I,b)+

 (3)

a= (a1,a2, ...,an)

Rtot Ri

i

σ(I,a) = R+(I,a)
∑

b∈A(I)

R+(I,b) ∑
b∈A(I)

R+(I,b)> 0

∑
∀a′
Rtot(I,a′)+ ⩽ 0

∑
b∈Ai(I)

Ri(I,b)+ ⩽ 0 ∀i ∈ {1,2, . . . ,n}

where  signifies  the  combined  action  of  the
team,  composed  of  each  team member’s  action,  and  and 
represent  the  accumulated  regret  values  of  a  team’s  joint  action
and  the  individual  action  of  team  member ,  respectively.  Note
that  Eq.  (2)  is  the  strategy  consistency  relationship.  In  the  CFR-
based  algorithm,  the  strategies  are  computed  using  regret-
matching based on accumulative regret values, which means that

 when .  Based  on  this,  we

can  easily  derive  Eq.  (3)  from  Eq.  (2).  If ,  then
according to the regret-matching, the strategy would be a uniform
strategy.  To  ensure  the  strategy  consistency  relationship  is
maintained,  the  accumulated  regret  values  of  individual  actions

must satisfy: , .  Thus, when the
consistency  relationship  between  accumulated  regret  values  is
upheld,  the  consistency  relationship  between  strategies  is  also
preserved. 

3.2    Product-form decomposition
Note that  our goal  is  to get  the accumulative regret  values of  the
team  member’s  actions  according  to  the  accumulative  regret
values  of  the  team’s  joint  actions.  Based  on  these  consistency
relationships  (Eqs.  (1−3)),  we  propose  a  product-form
decomposition  method  to  decompose  the  accumulative  regret
values  of  the  team’s  joint  actions  into  the  accumulative  regret
values  of  the  team  member’s  actions.  The  product-form
decomposition method can be defined as follows:

∀a, Rtot(I,a) =
n

∏
i=1

Ri(I,ai) (4)

Rtot ⩽ 0
Rtot = 0

To  void  the  negative  values,  we  follow  the  setting  of  regret-
matching+[24].  It  is  very  similar  to  regret-matching  and  the  only
difference is  the operation on negative accumulative regret value.
Different  from  regret-matching  ignoring  these  actions  with
negative accumulative regret values, regret-matching+ resets these
negative accumulative regret values back to zero. Here, if ,
then .  Therefore,  the  accumulative  regret  values  we
considered here are non-negative. The following theorem clarifies
that  the  product-form  decomposition  method  can  guarantee  the

Decision Making in Team-Adversary Games with Combinatorial Action Space

 

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023 5



consistency relationship between strategy representations.
Theorem  2　 If  product-form  decomposition  (Eq.  (4))  holds,

the consistency relationship between the joint action strategy and
the individual strategy (Eq. (1)) can be guaranteed.

∑
∀a′
Rtot(I,a′)> 0Proof　When , we can get

σ(I,a) = Rtot(I,a)
∑
∀a′
Rtot(I,a′)

=

n

∏
i=1

Ri(I,ai)

∑
∀a′
Rtot(I,a′)

(5)

n

∏
i=1

σ(I,ai) =
n

∏
i=1

Ri(I,ai)

∑
aji∈Ai(I)

Ri(I,aj
i)
=

n

∏
i=1

Ri(I,ai)

n

∏
i=1

∑
aji∈Ai(I)

Ri(I,aj
i)

(6)

These  equations  are  derived  by  the  regret-matching+  and
product-form decomposition equation.

n

∏
i=1

∑
aji∈Ai(I)

Ri(I,aj
i) =

n

∏
i=1

[Ri(I,a1
i)+Ri(I,a2

i )+ · · ·+Ri(I,a|Ai(I)|
i )] =

n

∏
i=1

Ri(I,a1
i)+

n−1

∏
i=1

Ri(I,a1
i)Rn−1(I,a2

n−1)+

· · ·+
n

∏
i=1

Ri(I,a|Ai(I)|
i ) =

Rtot(I,a1)+ · · ·+Rtot(I,a|A1(I)||A2(I)|···|An(I)|) =

∑
∀a′
Rtot(I,a′)

(7)

The  above  derivation  is  following  the  rules  of  polynomial
multiplication  and  product-form  decomposition  equation.
Therefore, Eq. (1) holds. □ 

3.3    Mixing layer

M= {M1,M2} IM

In  this  section,  we  introduce  our  novel  framework,  CFR-MIX,
which  is  based  on  the  CFR  framework.  As  previously  discussed,
our goal is to implement product-form decomposition within the
CFR  framework  to  ensure  the  consistency  relationship  between
strategy representations. To achieve this, we opt to implement the
product-form decomposition by incorporating a mixing layer into
the  deep-based  CFR  framework.  Next,  we  will  explain  why  we
opted  against  implementing  the  product-form  decomposition
method  within  a  tabular-based  CFR  framework,  using  a  simple
example to illustrate our reason. Assume that in a team-adversary
game,  there  are  two  team  members  in  the  team,  i.e.,

.  At  an  information  set ,  we  suppose  that  the

M1 {a11,a12}
M2

{a21,a22}
Rtot(I,a)

a ∈ {(a11,a21),(a11,a22),(a12,a21),(a12,a22)}

team member  has  two available  actions  denoted  by 
and  the  team  member  has  two  available  actions  denoted  by

.  Under  the  tabular-based CFR framework,  we can only
obtain the accumulative regret values of all joint actions ,
where .  Then  to  get  the
accumulative regret values of the team member’s actions, we need
to solve a nonlinear equation set which can be defined as follows:

Rtot(I,(a11,a21)) = R1(I,a11) ·R2(I,a21);

Rtot(I,(a11,a22)) = R1(I,a11) ·R2(I,a22);

Rtot(I,(a12,a21)) = R1(I,a12) ·R2(I,a21);

Rtot(I,(a12,a22)) = R1(I,a12) ·R2(I,a22).

⊗

Solving  this  equation  set  becomes  challenging  when the  game
has  a  large  number  of  team  members,  as  it  requires  significant
computational resources. Consequently, we opt to implement the
product-form decomposition method within the deep-based CFR
framework,  leveraging  the  impressive  function  approximation
properties  of  neural  networks.  In  another  scenario,  if  there  is  no
solution  for  the  equation,  it  implies  that  the  regret  cannot  be
decomposed  and  neither  can  the  strategy.  Although  there  is  no
theoretical guarantee in such cases, our neural network framework
is still capable of providing approximate results, while the tabular-
based method can not solve this case. To this end, we implement
the  product-form decomposition method via  a  mixing layer  in  a
deep-based  CFR  framework.  According  to  the  product-form
decomposition  method  defined  in  Eq.  (4),  we  here  design  the
mixing  layer  using  the  simple  product  operation  represented  by

, as shown in Fig. 2.
Here,  we  use  the  Double  Neural  CFR  framework  as  the  base

CFR framework to describe our CFR-MIX algorithm. It should be
noted that our mixing layer can be applied to any deep-based CFR
framework.  In  our  CFR-MIX  algorithm,  we  adopt  the  probe
sampling algorithm as the traverse algorithm to traverse the game
tree and compute regret values for traversed information sets. It is
important  to  note  that  we  employ  the  individual  strategy
representation  in  our  CFR-MIX  algorithm.  During  the  traversal
process,  when  it  is  the  team  player’s  turn  to  act,  each  team
member  calculates  their  own  strategy,  and  all  team  members’
strategies are combined into the team’s joint action strategy. The
team then  plays  the  composed  joint  action  strategy  in  the  game.
As a result, the team can compute regret values for all joint actions
under the traversal process. Finally, we can train an accumulative
regret  value  network for  the  team based on the  computed regret
values.

The  crux  of  our  CFR-MIX  algorithm  lies  in  the  team’s
accumulative  regret  neural  network,  which  implements  the

 

Rtot(st, a)

Mixing layer

Parameter sharing

Agent 1 Agent n

MLP

MLP

Rtot(st, a)

R1(st, ot
1, at

1) Rn(st, ot
n, at

n)

R1 R2 Rn
…

…

R1(st, ot
1, at

1) Rn(st, ot
n, at

n)

Rn(st, ot
n, at

n)

…

…

(st, ot
1, at

1) (st, ot
n, at

n)

(st, ot
n, at

n)

Fig. 2    Architecture of team’s accumulative regret neural network.

CAAI Artificial Intelligence Research

 

6 CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023



st Mi oit
ai
t Mi

ai
t

decomposition method via a mixing layer. Figure 2 illustrates the
architecture of the team’s accumulative regret neural network. In
this structure, the mixing layer is engineered to perform a product
operation on the accumulative regret values of all team member’s
actions,  subsequently  generating  the  accumulative  regret  values
associated with the team’s joint actions. The agent network serves
as  the  regret  network  for  the  team  member.  It  takes  the  team’s
information  set ,  team  member ’s  individual  observation 
and  an  available  action  of  team  member  as  inputs,  and
outputs  the  accumulative  regret  value  of  the  action .  Then  the
mixing  layer  composes  the  accumulative  regret  value  of  all  team
members  into  the  accumulative  regret  value  of  the  team’s  joint
action.  This  constitutes  the forward process.  Since we can obtain
the accumulative regret value of the team’s joint action using the
probe sampling algorithm, we can apply the MSE loss function to
compute  the  loss.  Finally,  we  can  train  the  regret  network  using
the gradient descent method.

After training the accumulative regret network for the team, we
need to  compute  the  strategy  for  the  next  iteration  based  on the
accumulative  regret  values  derived  from  the  accumulative  regret
network.  Since  we  only  consider  the  individual  strategy  of  the
team  member,  the  accumulative  regret  values  for  the  team
member’s actions are needed. As such, only the Agent network is
utilized  to  obtain  the  accumulative  regret  values  for  each  team
member’s actions. Then, we use regret-matching+ to compute the
individual  strategy  for  each  team  member  based  on  the
accumulative  regret  values.  To further  enhance  the  performance,
the  parameter-sharing  technique  is  applied  among  all  team
members,  significantly  reducing  the  number  of  parameters.  In
other  words,  all  team  members  share  a  single  Agent  network.
Lastly, to train the average strategy network over the strategies of
all  iterations,  we also  apply  the  parameter-sharing technique,  i.e.,
using one average strategy network for all agents. However, we use
all agents’ strategies to train the average strategy. The final average
strategy  is  the  output  that  guides  the  team  member  in  making
decisions. 

3.4    CFR-MIX framework
In this section, we provide the whole framework of the CFR-MIX
algorithm as shown in Algorithm 1. Firstly, we initialize the regret
network,  average strategy network,  and corresponding memories
for  each  player  (Lines  1−3).  Then  in  each  iteration,  we  first  use

one  sample  algorithm  to  traverse  the  game  tree  for  recording
regret  and strategy data  into memory (Lines  4−7).  The details  of
the  traverse  process  can  be  found  in  Algorithm  2  and  will  be
introduced later.  After  obtaining the  regret  and strategy  data,  we
train  the  regret  and  average  strategy  network  based  on  these
training  data.  This  process  repeats  many  times  and  finally,  the

 

Algorithm 1　CFR-MIX framework

R(I,a|θp) θp
p ∈ {V,M}

1: Initialize cumulative regret network  with  so that it
returns 0 for all inputs for player ;

S (I,a|θπ,p) p ∈ {V,M}2: Initialize average strategy network  for player ;
Mr,V Mr,M Mπ,V

Mπ,M

3: Initialize regret memories ,  and strategy memory ,
.

4: for CFR Iteration t=1 to T do

5: 　for traverse k=1 to K do

(φ,V,θV,θM,Mr,V,Mπ,M, t)6: 　　TRAVERSE

(φ,M,θM,θV,Mr,M,Mπ,V, t)7: 　　TRAVERSE
　　　#use sample algorithm to traverse the game tree and record regret
and strategy into memor

θp p ∈ {V,M}

L = E(I,̃r)∼Mr,p

[
∑
a
((R(·|θtp)+ r̃)+−R(·|θt+1

p ))2
]8: 　Train  on loss for player 

　　

θπ,p p ∈ {V,M}

L = E(I,π̃)∼Mπ,p

[
∑
a
((S(·|θtp)+ π̃)+−S(·|θt+1

p ))2
]9: 　Train  on loss for player 

　　

θπ,V,θπ,M10: return 

 

Algorithm 2　TRAVERSE

(h,p,θp,θ−p,Mr,p,Mπ,(−p))1: Function: TRAVERSE
h ∈ Z2: if  then

ui(h)3: 　return 

h4: else if  is a chance node then

a σc(h)5: 　Sample an action  from the probability ;

(ha,p, θp, θ−p, Mr,p, Mπ,(−p))6: 　return TRAVERSE

P(h) = p7: else if  then

I← h8: 　  Information set containing ;

σt(I)← I R(I,a|θp)9: 　  Strategy of Information set  computed from 
using regret-matching+;

a∗ 1/|A(I)|10: 　Sample an action  with the probability  of each action

a ∈ A(I)11: 　for  do

a= a∗12: 　　if  then

u(a)← ha∗,p,θp,θ−p,Mr,p,Mπ,(−p)13: 　　　  TRAVERSE( )
14: 　　else

u(a)← ha,p,θp,θ−p,Mr,p,Mπ,(−p)15: 　　　  PROBE( )
uσt ← ∑

a∈A(I)
σt(I,a)u(a)

16: 　

a ∈ A(I)17: 　for  do

r(I,a)← u(a)−uσt18: 　　

(I, t, r(I))
Mr,p

19: 　Insert the infoset and its action regret values  into regret
memory 

uσt20: 　return 

21: else

I← h22: 　  Information set containing ;

σt(I)← I R(I,a|θ−p)23:  Strategy of Information set  computed from 
using regret-matching+;

(I, t,σt(I))
Mπ,(−p)

24: 　 Insert the infoset and its strategy  into strategy memory
;

a σt(I)25: 　Sample an action  from the probability distribution ;

ha,p,θp,θ−p,Mr,p,Mπ,(−p)26: 　return TRAVERSE( )

 

Algorithm 3　PROBE

h,p,θp,θ−p,Mr,p,Mπ,(−p)1: Function: PROBE( )
h ∈ Z2: if  then

ui(h)3: 　return 

h4: else if  is a chance node then

a σc(h)5: 　Sample an action  from the probability ;
6: else

I← h7: 　  Information set containing ;

i← h8: 　  the player who takes an action at the history ;

σt(I)← I R(I,a|θi)9: 　  Strategy of Information set  computed from 
using regret-matching+;

a σt(I)10: 　Sample an action  from the probability distribution ;

ha,p,θp,θ−p,Mr,p,Mπ,(−p)11: return PROBE( )

Decision Making in Team-Adversary Games with Combinatorial Action Space

 

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023 7



average  strategy  networks  are  returned  as  the  approximate
equilibrium strategies.

Next,  we  detail  the  traverse  function  employed  for  recording
training data, as delineated in Algorithms 2 and 3. Our approach
utilizes  the  probe  sampling  CFR  algorithm  as  the  traverse
function.  It  is  important  to  note  that  any  sampling-based  CFR
algorithm  can  be  used  as  the  traverse  function.  It  is  a  recursion
function which operates as follows. Firstly, if the history within the
game  tree  reaches  a  terminal  state,  the  function  concludes  by
returning  the  utility  corresponding  to  the  traverser.  This  step  is
critical for determining the payoff at the end of a game sequence.
Secondly, in instances where the history represents a chance node,
an  action  is  sampled  according  to  the  probabilistic  distribution
associated with that node. Subsequently, the TRAVERSE function
is  recursively  applied  to  this  new  history,  thereby  advancing  the
game  state.  Thirdly,  during  the  traverser’s  turn,  the  function
departs  from  traditional  CFR  methods.  Initially,  the  current
strategy  is  calculated  using  regret-matching+,  informed  by  the
regret  values  derived  from  the  regret  network.  Notably,  the
function  does  not  necessitate  traversing  each  possible  action.
Instead,  one  action  is  selected  based  on  the  computed  strategy,
and this action alone is traversed. The values of the other actions
are estimated using the PROBE function.  The estimated value of
the  information  set  is  then  computed,  serving  both  as  the
function's return value and as a basis for generating regret values
for each action, which are essential for training the regret network.
Lastly,  when  it  is  the  opponent's  turn,  a  single  action  is  sampled
according to their  strategy.  This  action is  then traversed,  and the
strategy is recorded in the strategy memory. 

3.5    Convergence analysis

(S1,SV)
In  the  above  section,  we  have  introduced  how  our  CFR-MIX
work  in  game ,  i.e.,  the  strategy  of  the  team  can  be
decomposed  into  individual  action  strategies  of  team  members.
Here, we provide a bound of regret under mild conditions based
on the bound of regret for the Deep CFR algorithm[10].

T
|A| K

Lt
R

Rp(I,a|θt) Mr,p t Lt
R∗

R Lt
R−Lt

R∗ ⩽ εL

1− ρ p T

Theorem 3　Let  denote the number of CFR-MIX iterations,
 the  maximum  number  of  actions  at  any  infoset  and  the

number of traversals per iteration. Let  be the average MSE loss
for  on a sample in  at iteration , and let  be the
minimum loss achievable for any function . Let .
If the value memories are sufficiently large and Eq. (4) holds, then
with probability  total regret of player  at time  is bounded
by

RT
p ⩽

(
1+
√
2√
ρK

)
Δ|Ip|

√
|A|
√
T+4T|Ip|

√
|A|ΔεL.

T→+∞
RT

p

T
4|Ip|

√
|A|ΔεL

As ,  the  average  regret  is  bounded  by
 with high probability.

The proof of Theorem 3 is given in Appendix. 

4    Evaluation
To evaluate  the  efficacy  of  our  proposed  CFR-MIX algorithm in
solving team-adversary games, we adopt two deep learning-based
algorithms,  Double  Neural  CFR  and  Deep  CFR,  as  two  base
frameworks  and integrate  the  mixing layer  into each framework,
respectively.  For  clarity,  we  use  CFR-MIX  or  Double  CFR+MIX
to  denote  the  algorithm  that  incorporates  a  mixing  layer  into
Double  Neural  CFR,  while  Deep  CFR+MIX  refers  to  the
algorithm  that  includes  a  mixing  layer  in  Deep  CFR.  We
implement these algorithms on games from two distinct domains

to  assess  the  performance  of  our  proposed  mixing  layer.
Additionally, we conduct a comparison experiment between CFR-
MIX and  CFR-MIX without  the  parameter  sharing  technique  to
examine the performance of the parameter sharing technique. All
experiments  are  conducted  on  a  server  equipped  with  a  10-core
3.3 GHz Intel i9-9820X CPU and an NVIDIA RTX 2080 Ti GPU. 

4.1    Goofspiel game

1 K

First,  we  choose  a  poker  game  called  Goofspiel,  as  referenced  in
Ref. [25]. In Goofspiel (Fig. 3a), at the beginning of the game, each
player receives a hand of cards numbered  to . In each round,
players secretly bid on the top point-valued card from a point card
stack using the cards in their hand, taking turns. The player who
bids the highest card value wins the point value of the top point-
valued card. At the end of the game, the player who possesses the
highest total points wins in the game. In this context, we consider
a team-adversary variant of the Goofspiel game, in which there are
two  players  and  a  team  player  includes  several  team  members.
The team is deemed victorious as long as any of its team members
win.  Additionally,  we  consider  an  imperfect-information  version
of  the  game[26, 27],  where  players  only  know  the  outcome  of  each
round rather than the cards used by other players for bidding. For
the sake of simplicity, the number preceding the letter C refers to
the  number  of  hand  cards,  the  number  preceding  the  letter  P
denotes the number of team members, and the number preceding
the  letter  R  indicates  the  number  of  rounds  played  in  the  game.
Figure 3 shows the experimental results.

106 136

As seen in Fig. 3b, for the 6C4P6P Goofspiel game, algorithms
incorporating  a  mixing  layer  outperform  their  base  algorithm
counterparts.  Both Double CFR and Double CFR-MIX converge
to comparable results, while Deep CFR converges to a lower result
than  Deep  CFR-MIX.  This  could  be  attributed  to  the
approximation error stemming from the neural network, as Deep
CFR requires training a neural network to generate a strategy over
a  vast  action  space.  In  10C6P  and  13C6P  games,  we  exclusively
implement  our  CFR-MIX algorithm,  as  the  joint  action  space  in
these  games  is  exceedingly  large  (approximately  and ),
rendering  the  baselines  impractical.  Fortunately,  in  these  games,
our CFR-MIX algorithm can obtain satisfactory strategies within a
limited timeframe. 

4.2    NEST game
The  second  game  we  selected  is  the  NEtwork  purSuiT  (NEST)
game[28, 29], a more realistic version of the pursuit-evasion game. In
this game, a team of pursuers aims to capture the evader, while the
evader  strives  to  avoid  capture[30].  In  the  NEST  game,  tracking
devices  are  taken  into  account,  enabling  the  pursuer  team  to
obtain  real-time  location  information  about  the  evader.
Additionally,  the  game  requires  setting  a  predetermined  number
of steps.  If  the evader fails  to escape within the specified number
of  steps  or  gets  captured by the pursuer,  the game ends,  and the
pursuer  receives  a  one-unit  reward.  Conversely,  if  the  evader
manages  to  escape  within  the  specified  number  of  steps,  the
pursuer earns zero payoffs.  For our testbed, we select a grid map
and designate certain nodes as exit nodes. The initial locations for
both  players  are  chosen  randomly.  In  this  context,  we  consider
varying grid map sizes and differing numbers of team members in
the pursuer team.

Figure  4 shows  the  results  on  different  NEST  games.  From
Figs. 4a–4c, we observe that algorithms incorporating the mixing
layer surpass the baseline algorithms, consistent with the results in
the Goofspiel game. To circumvent the joint action space, we also
execute an algorithm in which every team member independently

CAAI Artificial Intelligence Research

 

8 CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023



 

0 100 200
Running time (h)

(a) Goofspiel game (b) 6C4P6R

0 100 200
Running time (h)

(c) 10C6P(2/3/4)R

0 100 200
Running time (h)

(d) 13C6P2R

0.7

0.8

0.9

1.0

W
or

st
-c

as
e 

ut
ilit

y

W
or

st
-c

as
e 

ut
ilit

y

W
or

st
-c

as
e 

ut
ilit

y

Double CFR+MIX 
Double CFR 
Deep CFR+MIX 
Deep CFR

−0.4

−0.2

0

0.2

CFR-MIX(4R) 

CFR-MIX(3R) 

CFR-MIX(2R)
−0.6

−0.4

−0.2

CFR-MIX

Fig. 3    Goofspiel games (C: card; P: team player; R: round).

 

0 20 40 60
Running time (h)

0

0.2

0.4

0.6

0.8

1.0

Ex
pl

oi
ta

bi
lit

y

Individual Double CFR 
Deep CFR
Deep CFR+MIX
Double CFR
Double CFR+MIX

0 100 200 300
Running time (h)

0

0.2

0.4

0.6

0.8

1.0

Ex
pl

oi
ta

bi
lit

y

CFR-MIX without PS
CFR-MIX
Double CFR
Deep CFR+MIX
Deep CFR

0 100 200 300
Running time (h)

0.4

0.6

0.8

W
or

st
-c

as
e 

ut
ilit

y 

Double CFR+MIX 
Double CFR

0 100 200 300
Running time (h)

(a) 3×3 grid, 1 vs. 2 (b) 5×5 grid, 1 vs. 4

(c) 15×15 grid, 1 vs. 4 (d) 15×15 grid, 1 vs. 8

0.30

0.32

0.34

0.36

0.38

W
or

st
-c

as
e 

ut
ilit

y 

CFR-MIX

Fig. 4    NEST games.

Decision Making in Team-Adversary Games with Combinatorial Action Space

 

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023 9



employs Double Neural CFR (Individual Double CFR). Figure 4a
presents the results, indicating that individual Double CFR fails to
converge  to  a  Nash equilibrium strategy  within  the  limited  time.
This  finding  supports  the  assertion  that  independent  training
methods  are  inadequate  for  solving  team-adversary  games.  We
also carry out an ablation study to validate the performance of the
parameter-sharing  technique.  The  results,  as  depicted  in Fig.  4b,
show  that  the  CFR-MIX  algorithm  surpasses  the  CFR-MIX
without  the  parameter-sharing  technique.  In  the  NEST  game
featuring  a  15×15  grid  map  and  four  team  members  in  the
pursuer  team,  we  did  not  implement  Deep  CFR-related
algorithms,  as  Deep  CFR  is  both  time-consuming  and  requires
considerable  memory  to  store  training  data.  Despite  these
limitations,  our  Double  CFR+MIX  still  significantly  outperforms
the  Double  Neural  CFR  algorithm.  Lastly,  in  the  game  with  a
15×15  grid  map  and  eight  team  members  in  the  pursuer  team,
only  our  CFR-MIX  can  be  executed,  as  the  number  of  team
members  is  too  large  for  the  baseline  algorithms.  Although  our
CFR-MIX does not converge within the limited time, it exhibits a
tendency to grow in worst-case utility. This suggests that our CFR-
MIX can obtain a better strategy compared to the initial  random
strategy.

The  extensive  experimental  results  across  games  from  two
distinct  domains  demonstrate  that  our  CFR-MIX  significantly
outperforms  state-of-the-art  algorithms.  In  large  games  with
numerous  team  members,  these  state-of-the-art  algorithms
struggle  to  find  solutions  due  to  the  exponential  growth  of  the
action  space.  In  contrast,  our  CFR-MIX  is  capable  of  obtaining
satisfactory  strategies  for  the  team within  a  limited  time,  even  in
these challenging scenarios. 

5    Conclusion
In this paper, we present a novel framework, CFR-MIX, based on
the  CFR  framework  to  address  the  team-adversary  games  with
combinatorial action space. To mitigate the issue of exponentially
growing action spaces, we depart from the traditional joint action
strategy  representation  and  introduce  a  new  strategy
representation,  individual  strategy  representation.  Furthermore,
we  define  a  consistency  relationship  between  strategy
representations  to  preserve  the  Nash  equilibrium.  Subsequently,
we  convert  the  consistency  relationship  between  strategy
representations  into  a  consistency  relationship  between
accumulative  regret  values  for  computing  the  Nash  equilibrium
under  the  CFR  framework.  We  also  propose  an  innovative
decomposition method over accumulative regret values to ensure
the  consistency  relationship  between  strategy  representations.  To
maintain  the  novel  decomposition  method,  we  employ  a  mixing
layer, constructing the CFR-MIX framework. Finally, we conduct
extensive  experiments  on  games  from  various  domains,  and  the
results  demonstrate  that  our  CFR-MIX  algorithm  significantly
outperforms state-of-the-art CFR-based algorithms. 

Appendix
 

Proof of Theorem 3
We  know  that  the  establishment  of  Eq.  (4)  guarantees  the
consistency  relationship  between  strategies  (Theorem  2).
Therefore,  under  Theorem  1,  we  know  that  under  the  new
strategy  representation,  the  NE  strategy  keeps  unchanged.  Then,
we  can  get  that  the  regret  bound  for  the  joint  strategy
representation  is  same  as  the  regret  bound  for  the  individual

strategy  representation.  The  another  difference  is  that  we  use
probe  sampling  algorithm  and  Deep  CFR  uses  the  external
sampling  algorithm.  The  following  proof  is  similar  as  the  proof
Theorem 1  in  Ref.  [10]  which  provides  the  regret  bound for  the
joint strategy representation. Here we gives a simple proof process
and readers can also refer to Ref. [10] for details.

Assume  that  an  online  learning  scheme  plays  strategy  as
follows:

σt(I,a) =


y+t (I,a)

∑
a

y+t (I,a)
, if ∑

a

y+t (I,a)> 0;

arbitrary value, otherwise
(A1)

y+t
RT,+

Corollary  3.0.6  in  Ref.  [25]  provides  the  upper  bound  of  the
total regret by leveraging a function of the L2 distance between 
and  on each infoset:

σt(I,a) =max
a∈A

(RT(I,a))2 ⩽ |A|Δ2T+

4Δ|A|
T

∑
t=1

∑
a∈A

√
(Rt

+(I,a)− yt+(I,a))2 ⩽

|A|Δ2T+4Δ|A|
T

∑
t=1

∑
a∈A

√
(Rt(I,a)− yt(I,a))2.

Δwhere  represent the range of utilities in the game.
σt(I,a)

C(I)> 0
As shown in Eq. (A1),  is invariant to rescaling across all

actions at an infoset, it’s also the case that for any ,

max
a∈A

(RT(I,a))2 ⩽|A|Δ2T+4Δ|A|
T

∑
t=1

∑
a∈A

√
(Rt(I,a)−C(I)yt(I,a))2.

xt(I) I
t I r̃t(I) MV,p

r̃t(I) = 0 MV,p

Let  be an indicator variable which is  1 if  was traversed
on  iteration .  If  was  traversed  then  was  stored  in ,
otherwise .  Assume  for  now  that  is  not  full,  so  all
sampled regrets are stored in the memory.

Π t xt(I) = 1
εt(I) = ||Et[r̃t(I)|xt(I) = 1]−V(I,a|θt)||2

t

∑
t′=1

xt′(I) C(I) =
t

∑
t′=1

xt′(I)

Let  be the fraction of iterations on which , and let
.  Inserting  canceling

factor of  and setting ,

max
a∈A

(R̃T(I,a))2 ⩽|A|Δ2T+4Δ|A|
T

∑
t=1

(
t

∑
t′=1

xt′(I))

∑
a∈A

√√√√√√√√
 R̃t(I,a)

t

∑
t′=1

xt′(I)
− yt(I,a)


2

=

|A|Δ2T+4Δ|A|
T

∑
t=1

(
t

∑
t′=1

xt′(I))

||Et[r̃t(I)|xt(I) = 1]−V(I,a|θt)||2 =

|A|Δ2T+4Δ|A|
T

∑
t=1

tΠ t(I)εt(I)⩽

|A|Δ2T+4Δ|A|T
T

∑
t=1

Π t(I)εt(I).

The first term of this expression is the same as the regret bound
of tabular CFR algorithm, while the second term accounts for the
approximation  error.  In  Ref.  [10],  Theorem  3  shows  the  regret
bound for K-external sampling, for the case of K-probe sampling,
we can get the same results. Thus, we can get

CAAI Artificial Intelligence Research

 

10 CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023



max
a∈A

(R̃T(I,a))2 ⩽ |A|Δ2TK2 +4Δ|A|TK2
T

∑
t=1

Π t(I)εt(I),

in  this  case.  Following the same derivation as  Theorem 3 in Ref.
[26],  the  above  regret  bound  can  lead  to  the  bound  of  average
regret.

RT
p ⩽ ∑

I∈Ip

((
1+
√
2√
ρK

)
Δ
√
|A|√
T

+
4√
T

√
|A|Δ

T

∑
t=1

Π t(I)εt(I)

)
.

Simplifying the first term and rearranging,

RT
p ⩽(1+

√
2√
ρK

)|Ip|Δ
√
|A|√
T

+

4
√
|A|Δ√
T ∑

I∈Ip

√
T

∑
t=1

Π t(I)εt(I)) =

(
1+
√
2√
ρK

)
|Ip|Δ

√
|A|√
T

+

4
√
|A|Δ√
T
|Ip|

∑
I∈Ip

√
T

∑
t=1

Π t(I)εt(I)

|Ip|
⩽(

1+
√
2√
ρK

)
|Ip|Δ

√
|A|√
T

+

4
√
|A|Δ|Ip|√

T

√
T

∑
t=1

∑
I∈Ip

Π t(I)εt(I).

LT
R(MT

r ) T
MT

r

Now,  let’s  consider  the  average  MSE  loss  at  time 
over  the  samples  in  memory .  We  start  by  stating  two  well-
known  lemmas:  (1)  The  MSE  can  be  decomposed  into  bias  and
variance components

Ex[(x− θ)2] = (θ−E[x])2 +Var(θ).

argmin
θ

Ex[(x− θ)2] = E[x] θ = E[x]
Var(x)

(2)  The  mean  of  a  random  variable  minimizes  the  MSE  loss
 and the value of the loss when 

is .

LT
R =

1

∑
I∈Ip

T

∑
t=1

xt(I)
∑
I∈Ip

T

∑
t=1

xt(I)||r̃t(I)−R(I|θT)||22 ⩾

1
|Ip|T ∑

I∈Ip

T

∑
t=1

xt(I)||r̃t(I)−R(I|θT)||22 =

1
|Ip|T ∑

I∈Ip

Π T(I)Et[||r̃t(I)−R(I|θT)||22|xt(I) = 1].

R∗ LT MT
rLet  be  the  model  that  minimizes  on .  Using  these

above two lemmas,

LLLT
R ⩾ 1
|Ip|T ∑

I∈Ip

Π T(I)(||R(I|θT)−Et[r̃t(I)|xt(I) = 1]||22 +xLLLT
R∗)

(A2)

Thus,

LLLT
R−LLLT

R∗ ⩾
1
|Ip| ∑I∈Ip

Π T(I)εT(I),

∑
I∈Ip

Π T(I)εT(I)⩽ Ip|(LLLT
R−LLLT

R∗),

RT
p ⩽
(
1+
√
2√
ρK

)
|Ip|Δ

√
|A|√
T

+

4
√
|A|Δ|Ip|√

T

√
T

∑
t=1

∑
I∈Ip

Πt
(I)εt(I)⩽

(
1+
√
2√
ρK

)
|Ip|Δ

√
|A|√
T

+
4
√
|A|Δ|Ip|√

T√
T

∑
t=1

|Ip|(LLLT
R−LLLT

R∗)⩽(
1+
√
2√
ρK

)
|Ip|Δ

√
|A|√
T

+
4
√
|A|Δ|Ip|√

T

√
T|Ip|εLLL =(

1+
√
2√
ρK

)
|Ip|Δ

√
|A|√
T

+4|Ip|
√
|A|ΔεLLL.

MMMr

t
K · |Ip| · t K · |Ip| ·T< |MMMr|

So  far  we  have  assumed that  contains  all  sampled  regrets.
The number of samples in the memory at iteration  is bounded
by .  Therefore,  if  then  the  memory
will never be full, and we can make this assumption.

ρ= T− 1
4Let .

P

(
RT

p >

(
1+

√
2√

T− 1
4 K

)
|Ip|Δ

√
|A|√
T

+4|Ip|
√
|A|ΔεLLL

)
< T− 1

4 .

ε > 0Therefore, for any ,

lim
T→+∞

P(RT
p −4|Ip|

√
|A|ΔεLLL > ε) = 0.

Article History
Received: 10 July  2023;  Revised: 14 September 2023;  Accepted: 3
November 2023

References 

 Y. Shoham and K. Leyton-Brown, Multiagent  Systems.  Cambridge,
UK: Cambridge University Press, 2008.

[1]

 H.  B.  McMahan,  G.  J.  Gordon,  and  A.  Blum,  Planning  in  the
presence of cost functions controlled by an adversary, in Proc. 20th
Int.  Conf.  Machine  Learning,  Washington,  DC,  USA,  2003,  pp.
536–543.

[2]

 M. Jain, D. Korzhyk, O. Vaněk, V. Conitzer, M. Pěchouček, and M.
Tambe,  A double  oracle  algorithm for  zero-sum security  games  on
graphs, in Proc. 10th Int. Conf. Autonomous Agents and Multiagent
Systems (AAMAS 2011), Taipei, China, 2011, pp. 327–334.

[3]

 M.  Zinkevich,  M.  Johanson,  M.  Bowling,  and  C.  Piccione,  Regret
minimization  in  games  with  incomplete  information,  Adv.  Neural
Inf. Process. Syst., vol. 20, pp. 905–912, 2008.

[4]

 M.  Bowling,  N.  Burch,  M.  Johanson,  and  O.  Tammelin, Heads-up
limit  hold’em  poker  is  solved,  Science,  vol.  347,  no.  6218,  pp.
145–149, 2015.

[5]

 N.  Brown  and  T.  Sandholm,  Libratus:  the  superhuman  AI  for  No-
limit  poker,  in  Proc.  26th  Int.  Joint  Conf.  Artificial  Intelligence,
Melbourne, Australia, 2017, 5226–5228.

[6]

 M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T.
Davis, K. Waugh, M. Johanson, and M. Bowling, DeepStack: Expert-
level artificial  intelligence in heads-up no-limit  poker, Science,  vol.
356, no. 6337, pp. 508–513, 2017.

[7]

 Marc  Lanctot,  Kevin  Waugh,  Martin  Zinkevich,  and  Michael
Bowling. Monte Carlo sampling for regret minimization in extensive
games,  in  Proc.  22nd  Int.  Conf.  Neural  Information  Processing
Systems, Vancouver, Canada, 2009, pp. 1078–1086.

[8]

 R.  Gibson,  M.  Lanctot,  N.  Burch,  D.  Szafron,  and  M.  Bowling,[9]

Decision Making in Team-Adversary Games with Combinatorial Action Space

 

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023 11

https://doi.org/10.1126/science.1259433
https://doi.org/10.1126/science.aam6960


Generalized  sampling  and  variance  in  counterfactual  regret
minimization,  Proc.  AAAI  Conf.  Artif.  Intell.,  vol.  26,  no.  1,  pp.
1355–1361, 2021.
 N. Brown, A. Lerer, S. Gross, and T. Sandholm, Deep counterfactual
regret  minimization,  in  Proc.  36th  Int.  Conf.  Machine  Learning,
Long Beach, CA, USA, 2019, pp. 793–802.

[10]

 E.  Steinberger,  Single  deep  counterfactual  regret  minimization,
arXiv preprint arXiv: 1901.07621, 2019.

[11]

 H.  Li,  K.  Hu,  S.  Zhang,  Y.  Qi,  and  L.  Song,  Double  neural
counterfactual regret minimization, in Proc. 8th Int. Conf. Learning
Representation, virtual, 2019.

[12]

 N.  Basilico,  A.  Celli,  G.  De  Nittis,  and  N.  Gatti,  Coordinating
multiple defensive resources in patrolling games with alarm systems,
in Proc. 16th Int. Conf. Autonomous Agents and Multiagent Systems
(AAMAS 2017), São Paulo, Brazil, 2017, pp. 678–686.

[13]

 N.  Abou  Risk  and  D.  Szafron,  Using  counterfactual  regret
minimization  to  create  competitive  multiplayer  poker  agents,  in
Proc.  9th  Int.  Conf.  Autonomous  Agents  and  Multiagent  Systems:
volume 1 - Volume 1, Toronto, Canada, 2010, pp. 159–166.

[14]

 T.  Rashid,  M.  Samvelyan,  C.  S.  de  Witt,  G.  Farquhar,  J.  Foerster,
and  S.  Whiteson,  Monotonic  value  function  factorisation  for  deep
multi-agent reinforcement learning, in Proc. 35th Int. Conf. Machine
Learning, Stockholm, Sweden, 2020.

[15]

 J.  F.  Nash  Jr,  Equilibrium  points  in  n-person  games,  Proc.  Natl.
Acad. Sci. U. S. A., vol. 36, no. 1, pp. 48–49, 1950.

[16]

 A.  Celli  and  N.  Gatti,  Computational  results  for  extensive-form
adversarial team games, Proc. AAAI Conf. Artif. Intell.,  vol. 32, no.
1, pp. 965–972, 2018.

[17]

 G. Farina, A. Celli, N. Gatti, and T. Sandholm, Ex ante coordination
and  collusion  in  zero-sum  multi-player  extensive-form  games,  in
Proc.  32nd  Conf.  Neural  Information  Processing  Systems  (NIPS
2018), Montreal, Canada, 2018.

[18]

 A. Celli, A. Marchesi, T. Bianchi, and N. Gatti, Learning to correlate
in  multi-player  general-sum  sequential  games,  in Proc.  33rd  Conf.
Neural Information Processing Systems (NeurIPS 2019), Vancouver,
Canada, 2019.

[19]

 Y. Zhang, B. An, and J. Černý, Computing ex ante coordinated team-[20]

maxmin  equilibria  in  zero-sum  multiplayer  extensive-form  games,
Proc. AAAI Conf. Artif. Intell., vol. 35, no. 6, pp. 5813–5821, 2021.
 K. Waugh, D. Schnizlein, M. Bowling, and D. Szafron, Abstraction
pathologies  in  extensive  games,  in  Proc.  8th  Int.  Conf.  on
Autonomous  Agents  and  Multiagent  Systems  (AAMAS  2009),
Budapest, Hungary, 2009, pp. 781–788.

[21]

 M. Schmid, N. Burch, M. Lanctot, M. Moravcik, R. Kadlec, and M.
Bowling,  Variance  reduction  in  Monte  Carlo  counterfactual  regret
minimization  (VR-MCCFR)  for  extensive  form  games  using
baselines,  Proc.  AAAI  Conf.  Artif.  Intell.,  vol.  33,  no.  1,  pp.
2157–2164, 2019.

[22]

 E.  Steinberger,  A.  Lerer,  and  N.  Brown,  DREAM:  deep  regret
minimization  with  advantage  baselines  and  model-free  learning,
arXiv preprint arXiv: 2006.10410, 2020.

[23]

 O.  Tammelin,  N.  Burch,  M.  Johanson,  and  M.  Bowling,  Solving
heads-up  limit  texas  hold’em,  in  Proc.  24th  Int.  Conf.  Artificial
Intelligence, Buenos Aires, Argentina, 2015, pp. 645–652.

[24]

 S. M. Ross, Goofspiel—The game of pure strategy, J. Appl. Probab.,
vol. 8, no. 3, pp. 621–625, 1971.

[25]

 V.  Lisý,  M.  Lanctot,  and  M.  Bowling,  Online  Monte  Carlo
counterfactual  regret  minimization  for  search  in  imperfect
information  games,  in  Proc.  2015  Conf.  Autonomous  Agents  and
Multi Agent Systems, Istanbul, Turkey, 2015, pp. 27–36.

[26]

 N.  Brown  and  T.  Sandholm,  Solving  imperfect-information  games
via  discounted  regret  minimization, Proc.  AAAI  Conf.  Artif.  Intell.,
vol. 33, no. 1, pp. 1829–1836, 2019.

[27]

 Y.  Zhang,  B.  An,  L.  Tran-Thanh,  Z.  Wang,  J.  Gan,  and  N.  R.
Jennings, Optimal escape interdiction on transportation networks, in
Proc.  26th  Int.  Joint  Conf.  Artificial  Intelligence,  Melbourne,
Australia, 2017, pp. 3936–3964.

[28]

 Y.  Zhang,  Q.  Guo,  B.  An,  L.  Tran-Thanh,  and  N.  R.  Jennings,
Optimal  interdiction  of  urban  criminals  with  the  aid  of  real-time
information,  Proc.  AAAI  Conf.  Artif.  Intell.,  vol.  33,  no.  1,  pp.
1262–1269, 2019.

[29]

 K.  Horák  and  B.  Bošanský,  Dynamic  programming  for  one-sided
partially  observable  pursuit-evasion  games,  arXiv  preprint  arXiv:
1606.06271, 2016.

[30]

CAAI Artificial Intelligence Research

 

12 CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150023 | 2023

https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.2307/3212187

	1 Preliminary
	1.1 Imperfect-information extensive-form game
	1.2 Team-adversary game
	1.3 Related work

	2 Strategy Representation
	2.1 Individual strategy representation
	2.2 Strategy consistency

	3 CFR-MIX
	3.1 Regret consistency
	3.2 Product-form decomposition
	3.3 Mixing layer
	3.4 CFR-MIX framework
	3.5 Convergence analysis

	4 Evaluation
	4.1 Goofspiel game
	4.2 NEST game

	5 Conclusion
	Appendix
	Proof of Theorem 3

	References

