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Abstract

The Man-in-the-Middle (MITM) attack has be-
come widespread in networks nowadays. The MIT-
M attack would cause serious information leak-
age and result in tremendous loss to users. Previ-
ous work applies game theory to analyze the MIT-
M attack-defense problem and computes the op-
timal defense strategy to minimize the total loss.
It assumes that all defenders are cooperative and
the attacker know defenders’ strategies beforehand.
However, each individual defender is rational and
may not have the incentive to cooperate. Further-
more, the attacker can hardly know defenders’ s-
trategies ahead of schedule in practice. To this end,
we assume that all defenders are self-interested
and model the MITM attack-defense scenario as
a simultaneous-move game. Nash equilibrium is
adopted as the solution concept which is proved to
be always unique. Given the impracticability of
computing Nash equilibrium directly, we propose
practical adaptive algorithms for the defenders and
the attacker to learn towards the unique Nash equi-
librium through repeated interactions. Simulation
results show that the algorithms are able to con-
verge to Nash equilibrium strategy efficiently.

1 Introduction

Recent years have witnessed the development of the Internet
and public concern of the potential leakage of sensitive in-
formation has been raised broadly. The Man-in-the-Middle
(MITM) attack is one of the attacks that can intercept sen-
sitive information which would result in tremendous loss in
terms of privacy and finance. It is reported that 95% of HTTP-
S servers are vulnerable to the trivial MITM attacks [Mutton,
2016]. Some events indicate the endangerment of the MITM
attacks such as the MITM attack against the GitHub in Chi-
na [Martin, 2013] which leads to the damage of the servers
and the leakage of information. Except the attacks against
the server, the attacker also launches the MITM attacks a-
gainst the Internet of Things (IoT). One notable example is
the MITM attack against smart cars. The hackers may be
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able to access and control vehicles’ basic functions, such as
brakes, steering and acceleration [Simko, 2016].

Significant research efforts have been devoted to address-
ing the MITM attack. These conventional defense technolo-
gies are mainly divided into two categories. One is to increase
the difficulty of launching the attack, such as applying com-
plicated encryption algorithm [Albina er al., 2013]. The other
is to detect the attacks and take the corresponding measures.
There are many detection techniques such as certificate val-
idation [Dacosta ef al., 2012] and utilizing the characteristic
of TCP packet [Vallivaara et al., 2014]. The measures taken
after detection are relatively simple such as enhancing the de-
fense for weak points and invoking reconnection. However,
the above works cannot eliminate MITM attacks completely.

Recently, a security game-theoretic model is proposed to
address the MITM attack problem given that the attacks are
inevitable [Li et al., 2017]. This model assumes that all de-
fenders are cooperative and are willing to sacrifice their own
utilities for the sake of minimizing system-level loss. Howev-
er, in real world, each defender is usually self-interested and
may not have the incentive to cooperate with others at the cost
of sacrificing his utility. Besides, it assumes that all defender-
s’ strategies are known to the attacker in advance, which may
be unrealistic in practice. Therefore, in this paper, we assume
that all defenders are self-interested and model the strategic
interaction between multiple defenders and an attacker as a
simultaneous-move game instead. It is natural to adopt its
Nash equilibrium as the solution concept. We theoretically
show that there always exists a unique Nash equilibrium and
also analyze the conditions when a unique pure strategy Nash
equilibrium exists. This theoretical property is desirable since
it eliminates the equilibrium selection problem.

However, it might be infeasible to compute Nash equilib-
rium strategy beforehand since each player’s payoff informa-
tion may not be completely available to its opponents in prac-
tice. The attacker and the defenders have to learn towards
their optimal (equilibrium) strategies through repeated inter-
actions. To this end, we propose practical learning algorithms
for the defenders and the attacker respectively. Simulation re-
sults show that our learning algorithms can converge to the u-
nique Nash equilibrium effectively. To summarize, our work
contributes to the state of the art in the following aspects:

e We model the strategic interaction between the MITM
attacker and multiple defenders as a simultaneous-move
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game and provide theoretical analysis of the uniqueness
of Nash equilibrium. The proof also provides us a theo-
retical method to compute Nash equilibrium.

e We propose practical learning algorithms for the defend-
ers and the attacker. The simulation results show that the
defenders can approximate the Nash equilibrium solu-
tion, which thus can be used as a practical way of com-
puting the optimal (equilibrium) strategy.

2 Background

2.1 Game Theory in Security

Nowadays, game theory has been used in the security area
widely. Earlier works mainly focus on how to protect criti-
cal infrastructures with limited resources against physical at-
tacks [Jain et al., 2010; Shieh et al., 2012; An et al., 2012;
Kiekintveld er al., 2013]. Gradually, some research begin to
employ security game theory to model cyber attacks [Laszka
et al., 2015; 2016; Zhao et al., 2016]. These works typically
consist of a Stackelberg game model in which the defender
makes his move first, while the attacker chooses an optimal
subset of targets to attack based on the defender’s strategy.
However, a Stackelberg model is not appropriate in all cas-
es. In some cases, a simultaneous-move game may be a better
reflection of the real situation [Xu er al., 2016]. In practical
MITM attack scenarios, an attacker usually cannot know the
defender’s strategy in advance [Mishra, 2013], which leads
us to believe that it would be more reasonable to model it as
a simultaneous-move game and we can employ Nash equilib-
rium as the optimal defending strategy. There also are some
research on how to design defender’s strategy against differ-
ent attacker under repeated interactions [Kltma er al., 2014;
2015; Gutierrez and Kiekintveld, 2016]. We also propose al-
gorithms to learn the optimal strategy through repeated inter-
actions due to the infeasibility of computing NE directly.

2.2 Man-In-The-Middle Attack

Taking the MITM attack against the server as an example, the
MITM attack is an attack where the attacker communicates
with the server by disguising as the end user and communi-
cates with the end user by disguising as the server. The infor-
mation transferred between the server and the end user will
be intercepted by the attacker while the user and the server do
not know the existence of the attacker.

The MITM attacker prefers to intercept the data packets to
obtain sensitive information. The data packets are transferred
through a port and each type of services is associated with a
default port. For example, port 80 is assigned for providing
the web service and the user who requires the web service will
communicate with the server through port 8§0. The attacker
usually monitors the default port of a particular service and
intercepts the useful information. To confuse the attacker, the
technology of port hopping is proposed to defend this attack
by mapping a service’s port to an unused pseudo-random port
[Luo ez al., 2014; 2015].

The conventional defense technologies against the MITM
attack are mainly divided into two categories. One is to in-
crease the difficulty of launching attack, such as adopting the
complicated encryption algorithm or taking safety measures
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in key change [Kumar et al., 2012]. The other line is to de-
tect the attack and take countermeasures accordingly. There
are many works on how to detect the attack, for example, ver-
ifying whether the server’s received certificate matches the
legitimate certificate [Huang et al., 2014] or utilizing the dif-
ference of characteristics under the attack, such as the times-
tamps of TCP packet headers [Vallivaara et al., 2014]. The
measures taken after detection are to enhance the defense for
weak points and invoke the reconnection. However, these de-
fense approaches cannot eliminate the attacks completely.
Recently, a security game-theoretic model is proposed to
address the MITM attack-defense problem given that the at-
tacks are inevitable [Li ef al., 2017]. The optimal defense s-
trategy is proposed which aims at minimizing the total loss of
the system under the assumptions that the attacker can know
the defender’s strategy in advance and all users are coopera-
tive. However, in practice, the defender’s strategy may not be
available for the attacker. Furthermore, individual users are
rational and may not be willing to sacrifice their own utilities
to achieve socially optimal outcome. For example, consid-
er the case of many users who require web service and an
MITM attacker who intercepts the information, the web serv-
er aims at minimizing the total loss of information leakage,
while each individual user is interested in whether his own
information is intercepted. To this end, we revisit the prob-
lem from a different perspective by attempting to answer the
following question: what is the optimal (equilibrium) defense
strategy for each self-interested defender given that the MIT-
M attacker cannot know the defenders’ strategies in advance?

3 MITM Attack-Defense Problem

Normally each type of services is associated with a default
port, but a service can be provided by multiple ports using
the technology of port hopping. We can classify all available
ports into different groups by the type of services it can pro-
vide. For each service v, there exists a corresponding set 7,
of ports available for providing service v. Here, we consider
the simplified case in which all users require the same service
v and the group 7, of ports can provide the service. We need
to distribute the ports within group T, to users who need the
service v. To simplify the analysis, we assume that there is a
bijection relationship between users and ports. Each port can
be used to represent an individually rational user who uses
it to communicate with the server. Therefore, we can model
each port and its representing user as one entity which can
also be treated as a defender. In the remainder of this paper,
the terms port and defender are used interchangeably.

To protect the information from being acquired, a defender
can insert some noise packets into the original packets and
thus reduce the proportion of useful information in the pack-
ets to decrease the total loss of the system under the MITM
attack in [Li et al., 2017]. Here, we follow the setting of this
work. Formally, we denote the proportion of useful informa-
tion in the mixed packets which is corresponding to the prob-
ability that an attacker can obtain useful information as p and
the extent of communication delay due to the noise packets
as q. They are both proportional to the percentage of insert-
ed noise packets. If the percentage of noise packets increas-
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Figure 1: The relationship between p and g (F'(p))

es, the proportion of useful information will decrease and
the communication delay will increase because more pack-
ets need to be transferred in order to send the certain quantity
of useful information. We represent the relationship between
p and q as the function ¢ = F(p), F(p) : [0,1] — [0, 1],
which can be obtained through simulation. Figure 1 shows an
example of the function F'(p). We can see that the function
F(p) is a smooth and non-increasing function. Therefore, we
assume that F'(p) is a continuous, strictly decreasing and con-
vex function of p in the following analysis. Here, we would
consider the loss of information leakage and the cost of com-
munication delay. Let v; denote the value of user ¢’s infor-
mation and c; represent the loss that user ¢ sustains caused by
the communication delay. The values of v; and ¢; are relative
to user ¢’s social status and urgency degree of the task.
Therefore, the defender needs to balance the tradeoff be-
tween the information leakage and the communication delay
to minimize its overall utility loss, i.e., computing the optimal
value of p which is the proportion of useful information.

4 Game-theoretic Modeling

In practice, the MITM attacker cannot observe the defenders’
strategies before launching the attack. Because the propor-
tion of useful information in a package can only be known
after analysing it which can only be obtained by launching a
MITM attack. Therefore, it is unrealistic to adopt the Stack-
elberg game model in this case, while a Simultaneous-move
game model is more suitable to model the interaction. Cer-
tainly, the attacker can learn the information of ports’ strate-
gies during the interactions and change his strategy towards
Table 1: symbols of our model

| Symbol [ Description ‘

Di probability of getting the useful information
from port ¢
F(p;) | extent of communication delay when port i
selects p; as its strategy
v; information value of the user using port ¢
C; cost that the user using port ¢ suffers from due
to the communication delay
L} expected loss of port ¢ given that it is attacked

with probability a;

(¢33

D; optimal probability p of port ¢ given that it is
attacked with probability a;
K number of ports attacked by the attacker
S set of attacked ports
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maximizing his payoff. Therefore, the model we adopt here
is a repeated simultaneous-move game. For the convenience
of the analysis, Table 1 lists the symbols used in our model.

Due to the practical resource limitations of the attacker,
we assume that it can only attack a limited number of port-
s. Therefore, an attacker’s pure strategy is to select a sub-
set S of ports from which he intercepts valuable information
(IS] € K, where K is a constant). The port ¢’s pure strate-
gy is to choose a p; value which is the proportion of useful
information. Let vector P denote the set of all N ports’ pure
strategies. Given a pure strategy profile (p, S), where p € P
and p = (p1, pe, ..., PN ), the attacker’s payoff can be defined
as

Uattacker = Zpﬂ}z (1)
icS
The loss (i.e., the inverse of payoff) of port ¢ under attack is
defined as

L} = pv; + F(p;)c;. 2
If port ¢ is not attacked, its loss is defined as

A mixed strategy of port ¢ is a continuous probability distri-
bution over its pure strategy (i.e., p; € [0, 1]). We will prove
that the best response for a port is always a pure strategy in
Section 4.1, thus only pure strategies need to be considered
for ports. Here, we will consider the mixed strategy for the
attacker. Let A represent the set of all subsets of K ports and
M denote the number of members of set A (i.e., M = |A]).
We can define the attacker’s mixed strategy as A A which is
the probability distribution over A. Formally, A A can also be
represented by the vector b= (by, ..., bys) for which b; > 0

and Zf\il b; = 1. b; represents the probability that the at-
tacker chooses the ith subset of set A. For convenience, we
use a; to denote the probability that the attacker targets port
1. Given a mixed strategy b, we can compute the correspond-
ing vector of probabilities a= (aq, ..., an ), which satisfies the
constraint ) . a; = K. For the remainder of this paper, we
will represent the attacker’s mixed strategy as the vector of
probabilities over different ports. For a given strategy profile
(p, a), the attacker’s expected payoff can be expressed as

N
Uattackcr = Z a;PiV; (4)
=1

and port ¢’s expected loss can be represented as
LY =a; L} + (1 —a;) LY
= a;pivi + F(pi)ci. (%)
To facilitate the analysis, we introduce the notation pf to
represent the optimal value of p; given that port ¢ is attacked

with probability a;. In essence, p;* is the value at which the
minimum of ;" is attained.

4.1 Theoretical Analysis

This section provides theoretical analysis of the model and
proves the existence of a unique Nash equilibrium. The u-
niqueness property eliminates the equilibrium selection prob-
lem and ensures that there must exist an optimal defense s-
trategy for the ports. We begin our analysis with a theorem
on the port’s best response.
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Lemma 1. The best-response strategy for a port is always a
pure strategy.

Proof. Firstly, we assume that there is a mixed strategy which
is the best response for port i. The mixed strategy is a contin-
uous probability distribution over pure strategy. Let g(x) rep-
resents the probability density function of the distribution and
variable X follows the distribution. Then, we construct a pure
strategy by computing the expected value of the distribution
asp; = B(X) = fol xg(x) dr. When port i plays the mixed
strategy, the attacker’s expected payoff of targeting port ¢ is
fol a;xvig(x)dr = a;E(X)v; = a;p;v;. It indicates that
if the port changes its strategy from the mixed strategy to the
pure strategy p;, other players’ payoffs and their best respons-
es would remain the same. Finally, given the attacker’s strat-
egy a, the expected loss of port ¢ playing the mixed strategy is
LX) = fol (a;xzg(x)v; + F(zg(z))c;) de = a; E(X)v; +
E(F(X))c; and the loss corresponding to the pure strategy
is L' (pi) = a;E(X)v; + F(E(X))c;. Since the function
F(p) is strictly convex, we have L{*(p;) < L{*(X) accord-
ing to the Jensen’s inequality [Chandler and Percus, 1987].
The port’s loss of pure strategy is strictly less than that of
mixed strategy which implies that the best response for a port
must be a pure strategy. O

Next, we provide a necessary and sufficient condition for
the existence of a pure strategy Nash equilibrium. Finally, we
consider both pure and mixed strategy and prove that there is
a unique Nash equilibrium.

Lemma 2. The game has a pure strategy Nash equilibri-
um if and only there exists a set S of K ports such that
mines pv; > max;gg pYv;.

Proof. Given a attacker’s pure strategy S, we know that p?
is the best response for port i ¢ S and p} is the best re-
sponse for port ¢ € S. So the port’s strategy would be
either p{ or p! in the pure strategy NE. From equation 1,
we know the attacker’s best response is to select a set S' of
ports with the highest p;v; values. So in pure strategy NE,
the set of ports S must satisfy the condition in the Lem-
ma 2; otherwise, the attacker’s strategy would not be the
best response. Based on the definition of the pf", we know
pY > pl. The condition in the Lemma 2 can be transformed
as minjeg pjv; > Max;gs piv; > Max;gg p;v;. From the
above inequality, we can know that there exists at most one set
S satisfying the condition. Next, if set S exists, then the at-
tacker targeting at .S and the users playing their best responses
pY or pi constitute obviously an equilibrium. O

Theorem 1. There always exists a unique Nash equilibrium.

Proof. Firstly, we provide a sufficient and necessary condi-
tion of Nash equilibrium that a strategy profile (p, a) is Nash
equilibrium if and only if there exists a value A such that for
every port %,

e a; =0=p; = p) and pv; < \;
e 0<a; <1=p;=p and pjv; = \;
e a;=1= p; =pland piv; > \.

Then we will prove it briefly. Given the attacker’s strategy a,
we can see that every port plays its best response p;* which
is the optimal value that minimizes its expected loss. Given
ports’ strategies p, the attacker’s best response is to select a
set of ports with the highest p;v; values. There must be such a
value ) that the attacker will target the ports whose values of
p;v; are larger than A and the ports whose values of p;v; equal
A with certain probability. Obviously, the strategy @ which
satisfies the above condition is the attacker’s best response.
Thus the strategy pair (p, a) is the best response for both sides.

Py if pdu; <\

Next, we define p;(\) = ¢ p} if plv; > A; We can see
U%_ otherwise.
that this function is continuous and non-decreasing in A\ and
the function is strictly increasing if the value of p;(A) is
strictly larger than p} and strictly smaller than p?. We de-
fine a;(\) = a* and a* satisfies p;(\) = p¢ . Notice that
pt < pi(A\) < pY always holds and p;()) is continuous and
non-increasing, thus a; () is a continuous and non-increasing
function of A. Similarly, the function is strictly decreasing if
the value of a;(\) is strictly larger than 0 and strictly smaller
than 1. Then, we define E(X\) = K — ) a;(\). It is ob-
vious that E()) is a continuous and increasing function of
A If A = 0, each a;(\) will be 1 and we have E(\) =
K — number of ports < 0; and if the value of X is so large
that each a;(\) equals 0, then we have E(A\) = K — 0 > 0.
Therefore, we can find a value A* such that E(\*) = 0.

If the game has a pure strategy equilibrium, then there must
be a gap between the Kth highest plv; and (K + 1)th highest
pYv; according to the Lemma 2. The value of E(\) is 0 when-
ever A is in the gap, thus A* is not unique, while the strategy
given by p;(A*) and a;(A\*) is unique (i.e., pure strategy NE).
If the game does not have a pure strategy equilibrium, then
A* is unique because E'()\) is a continuous function.

Finally, the strategy profile given by p;(A*) and a;(\*) is a
Nash equilibrium, because they satisfy the sufficient and nec-
essary conditions of Nash equilibrium established at the be-
ginning of the proof. Furthermore, for any A\* value, the only
strategy profile that satisfies the conditions is the one given
by p;(A\*) and a;(\*). There is a unique A\* in a mixed strat-
egy equilibrium and thus the equilibrium strategy is unique.
Though the value of A* is not unique in a pure strategy equi-
librium, the equilibrium strategy given by p;(A\*) and a;(\*)
is unique. Therefore, there always exists a unique NE. [

5 A Practical Learning Algorithm

The proof of Theorem 1 provides a way of computing the
Nash equilibrium when we know the game’s perfect infor-
mation. However, in practice, it is unlikely for a port to ac-
cess the perfect information of the game. Thus it is infeasible
for ports to compute the Nash equilibrium using the above
method. To this end, we propose a learning framework to
enable each port to learn towards Nash equilibrium strategy.
The overall learning framework is described as follows.
First, each port and the attacker selects their defending and
attacking policies simultaneously. Second, each player plays
its policy and receives the corresponding feedback informa-
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tion. Finally, each player updates its strategy based on the
interaction information. The learning algorithms used by the
ports and the attacker extend the fictitious play and the Pol-
icy Hill-climbing (PHC) algorithm respectively and will be
described in detail in the following subsections.

5.1 Learning Algorithm of the Defenders

Recall that the expected loss of port i is L = a;p;v; +
F(p;)c; (Equation 5). If we can get the value of a;, then we
can compute the optimal value of p; easily since the function
F(p) is continuous, strictly decreasing and convex. We de-
sign the learning algorithm for the port inspired by the idea
of fictitious play. The main idea of the algorithm is to predict
the value of a; and compute the optimal value of p; based on
the predicted a;. Here, we use the frequency of being attacked
in the past round to estimate the value of a;.

Algorithm 1 The learning algorithm of port %

1: Initialize attack flag < 0 and A, < 0;
2: for each round ¢ do
3:  Choose the best defence strategy p;
pi +— argmin L?’J;
pi

Play policy and receive the feedback of the interaction;
if port i is attacked then

attack flag + 1;
else

attack flag < 0
end if
Update the probability A,
A, < A, + 1(attack flag — Ap);
11: end for

SYRIAUNhR

1

Algorithm 1 shows the learning algorithm of the defender
(port 7). The variable attack flag is used to indicate whether
port ¢ is attacked and A, is the estimated value of a;. In
practice, there are many different detection techniques against
the MITM attack by which the port can know whether it is
being attacked [Conti et al., 2016]. The value of attack flag
is 1 if it is attacked, otherwise, the value is 0. The initial value
of attack flag is O which implies that the port is positive and
believes that it will not be attacked. First, the port selects its
best strategy p; which is the value at which the minimum of

Lf‘” is attained (Line 3). Then, the port plays its strategy and
records its status of whether it has been attacked. Finally, the
port updates the variable attackflag and A, based on the
interaction information (Lines 5-10).

5.2 Learning Algorithm of the Attacker

From the attacker’s expected payoff function shown in Equa-
tion 1 and the constraint condition , @i = K, we know that
the attacker’s myopic best response is to set a high value of
a; to the port who has the highest value of p;v;. However,
the attacker cannot get the value of p;v; in advance, thus he
maintains a )-value for each port i to estimate the expected
payoff when he attacks port 7. Here, we use a; to denote the
probability that the attacker selects port ¢ to launch attack and

Algorithm 2 The learning algorithm of the attacker

1: Initialize a; < % and Q; < 0;
2: for each round ¢ do
3:  Choose the set .S of port based on the vector a;

4:  Play policy and receive the feedback;
5. for each port ¢ do

6: if i € S then

7. Q7 — (1 — OL)Q, + ar;;

8: end if

9:  end for

10:  Select the set C of K ports with the highest ()-value;
11:  Select the set D of K ports with the lowest )-value;
12:  Update a and constrain it to a legal probability distri-

bution;
a;+90 te€Candi gD
a;<—<a;—6 i€ Dandi & C;
a; otherwise
13: end for

adopt the policy gradient-based learning algorithm to adjust
a; according to the Q-values.

Algorithm 2 depicts the learning algorithm of the attacker.
We use vector a to represent the attacker’s mixed strategy and
initialize a; with % which means that the attacker targets all
ports without preference originally. First, the attacker selects
aset S based on vector @ (Line 3). Then, the attacker launches
attacks against the ports which are in set S. The ()-values are
updated based on the feedback received in the current round
(Lines 5-9). Finally, the attacker adjusts vector a according to
the Q-values (Lines 10-12). The update of vector a is similar
to the Policy Hill-climbing (PHC) algorithm. In PHC algo-
rithm, the value of a; will be increased if its corresponding
value of @); is the highest and others will be decreased. How-
ever, we select a set C' of K ports with the highest ()-value
and a set D of K ports with the lowest (Q-value. The a; value
of port ¢ in set C' will be increased and it will be decreased
if port 7 in set D. The a-values for the rest of ports would
remain unchanged. Meanwhile, the value of vector @ must
be constrained to follow a legal probability distribution (i.e.,
0< a; < 1,Ziai = K)

6 Experimental Evaluation

This section evaluates the performance of the algorithms de-
scribed in Section 5 through comparing with the theoretical
Nash equilibrium strategy. Before the experiment, the rela-
tionship between p and ¢ should be obtained through simula-
tion. Intuitively, if there are no noise packets inserted (p = 1),
then there should be no communication delay (¢ = 0). On the
contrary, if all packets are noise (p = 0), the communication
delay must be the maximum and we set the value of g to 1 in
this case. As for those non-extreme situations, we compute
the value of ¢ according to communication time which is rel-
ative to communication delay. Suppose that the quantity of
useful packets is constant, we only need to record communi-
cation times by varying p within range of [0,1]. The function
F(p) can be obtained after normalizing communication times
to the range of [0,1], which is illustrated in Figure 1.
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Figure 3: The case of two different users

In the following experiments, all the results are averaged
over 100 runs. For the sake of exposition, we start with a
simple case of two users and one attacker who can only attack
a single user. In this case, we consider the following two
situations.

1) We assume that the profiles of two users are the same.
The values of v and c¢ are defined as follows: v; = vy = 2,
c1 = co = 1. Intuitively, we know that the attacker’s
best response is to attack each user with the same proba-
bility. We can compute mixed-strategy Nash equilibrium
(p1 = 0.1,p2 = 0.1,a; = 0.5,a2 = 0.5) and the expect-
ed payoff of the attacker in Nash equilibrium is 0.2. Figure
2 shows that each user’s strategy converges to the strategy in
Nash equilibrium quickly and stabilizes on it finally. The at-
tacker’s strategy fluctuates up and down near the equilibrium.
Though the attacker’s strategy cannot stabilize, his expected
payoff (0.2033) obtained in experiment approximates the ex-
pected payoff in Nash equilibrium efficiently.

2) Next, we consider the case of two different users. Let
v1 = 1,v9 = 2,¢1 = 1 and co = 2. At the beginning, the
attacker may target user 2 with a higher probability since user
2 has the higher information value. Thus, user 1 may relax
his defense strategy and there is an ascent process as shown

Table 2: The results of user’s strategy

User | Theoretical | Experimental
user 1 0.2073 0.2176
user 2 0.1756 0.1764
user 3 0.1702 0.1726
user 4 0.1603 0.1654
user 5 0.2006 0.2105
user 6 0.2342 0.2451
user 7 0.2277 0.2320
user 8 0.2265 0.2248

in Figure 3. Finally, we can see that the users’ strategies con-
verge to the NE. The strategy of attacker fluctuates around
the equilibrium and the expected payoff of attacker (0.2240)
approximates the expected payoff in NE (0.22).

Next, we consider a general case in which there are eight
users and one attacker who can attack two users at the same
time. We assume that users’ information value v; follows
the power law distribution. The motivation behind this hy-
pothesis is the hierarchical structure in organizations [Griffin,
2016]. Tt indicates that most users have low social status and
very few have high social status. The value of c; is related
to urgency degree of the task. Here, we also assume that the
value of ¢; follows the power law distribution.

Table 2 presents the theoretical value and the experimental
results of users’ strategies which are obtained at 1000 round.
The error will be smaller with the increase of rounds since a;
value that the user estimates will be more accurately when us-
ing more historic information. The differences between the fi-
nal converged value and the true NE are statistically insignif-
icant when the significance level is 5%. As for the attacker,
we find that the attacker’s strategy still fluctuates around the
equilibrium but his expected payoff (2.9040) at 1000 round is
close to the expected payoff (2.8642) in NE and the difference
between them is also no significant at 5% level.

In summary, our learning algorithms can ensure the users
converge to NE and the expected payoff of attacker approx-
imates the expected payoff in NE within an acceptable error
range. One deficiency may be that it requires hundreds of in-
teractions before convergence in some cases. However, the
user’s average reward can quickly stabilize around a high lev-
el within dozens of rounds, though its strategy has not yet
converged to the true NE. It implies that its strategy could
perform well after a small number of interactions.

7 Conclusion

We solve the MITM attack-defense problem under a repeat-
ed simultaneous-move game model aiming at minimizing the
defenders’ own loss. Nash equilibrium is adopted as the opti-
mal defense strategy for the defenders. We also provide theo-
retical analysis of the uniqueness of Nash equilibrium which
addresses the equilibrium selection problem. Since the us-
er cannot compute the Nash equilibrium directly, we propose
learning algorithms for the defenders and the attacker to learn
towards the Nash equilibrium. Simulation results show that
our learning algorithm can converge to Nash equilibrium ef-
ficiently. The attacker’s strategy fluctuates within a certain
range but his expected payoff approximates the expected pay-
off in Nash equilibrium.
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