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Dynamic Analysis of Cell interactions in Biological Environments under 
Multiagent Social Learning Framework 

Chengwei Zhang I , Xiaohong Lil, Shuxin Lil and Jianye Hao2 

Abstract- Biological environment is uncertain and its dy­
namic is similar to the multiagent environment, thus the 
research results of the multiagent system area are of great 

significance and can provide valuable insights to the under­
standing of biology. Learning in a multiagent environment is 
highly dynamic since the environment is not stationary anymore 
and each agent's behavior changes adaptively in response 
to other coexisting learners, and vice versa. The dynamics 
becomes more unpredictable when we move from fixed-agent 
interaction environments to multiagent social learning frame­
work. Analytical understanding of the underlying dynamics is 
important and challenging. In this work, we consider a social 
learning framework with homogeneous learners (e.g., Policy Hill 
Climbing (PHC) learners), to model the behavior of players in 
the social learning framework as a hybrid dynamical system. 
By analyzing the dynamical system, we obtain some conditions 
about convergence or non-convergence. It can be used to predict 
the convergence of the system. At last, we experimentally 
verify the predictive power of our model using a number of 
representative games. 

I. INTRODUCTION 

All living systems live in environments that are uncertain 
and dynamically-changing. It is remarkable that these sys­
tems survive and achieve their goals by exhibiting intelligent 
features such as adaption and robustness. Biological system 
behaviors[ l] are often the outcome of complex interactions 
among a large number of cells and their environments. 

Similarly, in the multiagent system[2], [3], [4], [5], [6], 
an important ability of an agent is to adjust its behavior 
adaptively to facilitate efficient coordination among agents 
in unknown and dynamic environments. If we regard the 
cells in the biological system as the agents in the multiagent 
system, we can analyse the cells' behavior using multiagent 
system. So understanding collective decision made by such 
intelligent multiagent system is an interesting research topic 
not only for artificial intelligent but also for biology. The 
conclusion of the theoretical analysis can be applied to the 
research of biology, for example, the results of convergence 
can be used for explaining the phenomenon of cell's group 
behaviour. 

Now, many researchers have investigated biological sys­
tems which are composed of cells and their environment 
via modeling and simulation[I], [7]. There are two principal 
approaches: population based modeling and discrete agent 
based modeling. Population based modeling approximates 
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the cells within any grid box by a set of variables associated 
with the grid box[8], [9]. Discrete agent based modeling 
maps each cell to a discrete simulation entity[8], [10], [11]. 

We use multiagent learning techniques to model the be­
haviors of each cell agent, which is an important technique to 
achieve efficient coordination in multiagent system area[6], 
[12], [13]. Until now, significant amount of efforts have been 
devoted to develop effective learning techniques for different 
multiagent interaction environments[14], [15], [16]. In the 
multiagent environments, each agent interacts with an agent 
selected from its neighborhood randomly each round, and 
updates its strategy based on the feedback in the current 
round. To describe the behavior of an agent, one common 
line of researches is to extend existing reinforcement learning 
techniques in single-agent environment to multiple-agent 
interaction environment. However, due to the violation of 
Markov property, the existing theoretical guarantees do not 
hold any more in muItiagent environment. It is challenging 
for us to model the multi-agent environment and understand 
the learning dynamics of multiagent environments. 

This paper presents a social learning framework model to 
simulate the dynamics of multi-agent system in biological 
environment, as well as a theoretical analysis of the learning 
dynamics of this model. The analysis results shed lights 
on how and when the consistent knowledge in terms of 
equilibrium can be evolved or not among the population 
of agents. In the social learning framework, all agents play 
PHC strategy [ 17] for decision making, and use a weighted 
graph model for neighbor selection. In the part of theoretical 
analysis, we present a theoretical model to analyze the 
learning dynamics of the learning framework. The purpose 
of analysing the learning dynamics is to judge whether the 
learning algorithm that the agent adopt can converge or 
can not. The intention behind is that convergence to an 
equilibrium has been the most commonly accepted goal to 
pursue in multiagent learning literature. Firstly, we model the 
overall dynamics among agents as a system of differential 
equations. Then, some conditions are proved to be the 
sufficient condition of convergence or non-convergence. It 
can be used to predict the convergence of the system. Finally, 
we estimate the prediction through simulation experiment. 
It shows that our theoretical analysis well predicts the 
experimental results. 

The remainder of the paper is organized as follows. 
Section II reviews normal-form game and the basic gradient 
ascent approach. Section III introduces the multiagent learn­
ing framework of our model. Theoretically analyzation of 
the proposed framework and its corresponding experimental 
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simulation are proposed in Section IV and V respectively. 
Lastly Section VI concludes the paper. 

II. BACKGROUND 

A. Normal-form games 
In a two-player, two-action, general-sum normal-form 

game, the payoff for each player i E {k, I} can be specified 
by a matrix as follows, 

(1) 

Each player i simultaneously selects an action from its 
action set A ;  = {I, 2}, and the payoff of each player is 
determined by their joint actions. For example, if player k 
selects the pure strategy of action 1 while player I selects 
the pure strategy of action 2, then player k receives a payoff 
of rF and player I receives the payoff of rJ2. 

Apart from pure strategies, each player can also employ a 
mixed strategy to make decisions. A mixed strategy can be 
represented as a probability distribution over the action set 
and a pure strategy is a special case of mixed strategies. Let 
Pk E [0, 1] and PI E [0, 1] denote the probability of choosing 

action 1 by player k and player I respectively. Given a joint 
mixed strategy profile (Pk, PI)' the expected payoffs of player 
I and player r can be computed as follows, 

Vk (Pb PI) =rk 1 PkPI + rF Pk (1 - PI) + rF (1 - Pk) PI 
+ r�2 (1 - pd (1 - PI) 

VI (Pb PI) =r} 1 PkPI + rf2 Pk (1 - PI) + rl1 (1 - Pk) PI 
+ r12 (1- Pk) (1 - PI) 

(2) 

A strategy profile is a Nash Equilibrium (NE) if no player 
can get a better expected payoff by changing its current 
strategy unilaterally. Formally, (pZ,p;) E [0,1]2 is a NE, iff 
V k (pic, PI) ;::: Vk (Pb PI) and V I (pic, PI) ;::: VI (pZ, PI) for any 
(PbPI) E [0,1]2. 

B. Gradient Ascent (GA) and PHC algorithm 
When a game is repeatedly played, an individually rational 

agent updates its strategy with the propose of maximizing its 
expected payoff. We know that the gradient direction is the 
fastest increasing direction, thus it is a well-deserved way to 
model the behavior of agent using gradient ascent algorithm. 
Agent i that employs GA-based algorithm updates its policy 
towards the direction of its expected reward gradient, which 
is shown in the following equations. 

d�. ( (I)) 

(/+1) I P 
b.Pi f- 1] -. op; 

(1+1) il ((I) +b. (1+1) ) Pi f- [0,1] Pi Pi 

(3) 

(4) 

The parameter 1] is the size of gradient step. il[o,l] is 
the projection function mapping the input value to the valid 
probability range of [0, 1], which is used for preventing the 
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gradient from moving the strategy out of the valid probability 
space. Formally, we have, 

il[o,l] (x) = argminZE[o,I]lx- zl (5) 

To simplify the notation, let us define Ui = rJI + r[2 - r12 -
r21 c· = rl2 - r22 and d· = r21 - r22 For the two-player case I , I 1 1 I I I ' , 
the Equation 3 and 4 can be represented as follows, 

(1+1) ((I) ( (I) )) 
Pk f- il[o,l] Pk + 1] UkPI + ck 

(1+1) ((I) ( (I) )) 
PI f- il[o,l] PI +1] UIPk +dl 

(6) 

(7) 

In the case of infinitesimal size of gradient step (1] --+ 0), 
the learning dynamics of the agent can be modeled as a 
system of differential equations. Further, it can be analyzed 
using dynamic system theory [19]. It is proved that the 
strategies of all agents will converge to a Nash equilibrium, 
or if the strategies do not converge, agents' average payoff 
will converge to the average payoff of Nash equilibrium [18]. 
The policy hill-climbing algorithm (PRC) is a combination of 
gradient ascent algorithm and Q-Iearning where each agent i 
adjusts its policy P to follow the gradient of expected payoff 
(or the value function Q). 

III. MODELING MULTIAGENT LEARNING 

Under a multiagent social learning framework with N 
agents, each agent interacts with one of its neighbors se­
lected randomly from its neighborhood each round. The 
neighborhood of each agent is determined by its underlying 
network topology. The interaction between each pair of 
agents is modeled as a two-agent normal-form game. During 
an interaction, each agent selects its action following a 
specified learning strategy, which is updated repeatedly based 
on the feedback from the environment at the end of each 
interaction. The framework is presented in Algorithm 1. 

Algorithm 1 Overall interaction protocol of the social learn­
ing framework 

1: repeat 
2: for each agent in the population do 
3: Chose one of its neighbors with a certain probabil­

ity. 
4: Play a two-player normal-form game with this 

neighbor and choose one of his action. 
s: Select a action according to its mixed strategy with 

suitable exploration. 
6: end for 
7: Environmental feedback. 
8: for each agent in the population do 
9: Observing reward r and update its policy based on 

its past experience according to specific policies. 
10: end for 
11: until the repeated game ends 

We use graph G = (V, E) to model the underlying neigh­
borhood network, which is composed by N = IV I agents. 
The edges E = {e;j}, i, j E V represent social contacts among 
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agents, where eij denotes the probability that agent i chooses 
agent j to interact with. And we have LjEVeij = 1/\ eu = 
O. Here, we propose an adaptive strategy for agents to 
make their decisions in social learning framework with PHC 
learning strategy, which is shown in Algorithm 2. 

Algorithm 2 Learning process in the multiagent framework 
for agent i E V 

1: Let a E (0 ,1] and 0 E (0 ,1] be learning rates. 
Initialize Q i (a) +--- 0, Pi (a) +--- Ill!. 

2: repeat 
3: Select agent j E V according to E with probability eij, 

and play a 2 x 2 game with palyer j. 
4: Select action a E A; according to mixed strategy Pi 

with suitable exploration. 
5: Observe reward r according to interaction between i 

and j. 
6: Update Q value 

Q; (a) +--- (1 - a) Q; (a) + a r 
7: Step P closer to the optimal policy w.r.t. Q, 

Pi (a) +--- Pi (a) +�a 
while constrained to a legal probability distribution, 

�a = { -Oa a -I- argmax a, Q i(a' ) 
La'"ca oal otherwise 

oa = min ( Pi(a ) , IAif-l) 
8: until the repeated game ends 

Here, a E (0 ,1] and 0 E (0 ,1] are learning rate, and Q 
values are maintained just as in normal Q-learning. The 
policy is improved by increasing the probability of selecting 
the highest valued action based on the learning rate o. 

IV. ANALYSIS OF THE MULTlAGENT LEARNING 

DYNAMICS 

In this section, we present a theoretical model to estimate 
and analyze the learning dynamics of the above multiagent 
learning framework in Algorithm 2. We extend notations in 
section II to the multiagent environment. Without loss of 
generality, we consider the case with two-action only. 

Assume that the payoff that an agent receives only depends 
on the joint action, then the payoff for agent i E V can be [rll r12] 
defined as a fixed matrix Ri = �l �2' where r:nn denotes r; r i 
the payoff agent i receives when i selects action m and 
its neighbor selects n. Here, we use the Pi to donate the 
probability that the player i selects action l. Then the mixed 
strategy (Pl, P2, ... , PN) in multiagent framework G= (V,E) 
can be considered as a point in ]RN constrained to the unit 
square. The expected payoff V; (PI, P2, ... , PN) of player i can 
be computed as follows, 

V;(Pl, P2, ···, Pn) 
= L. jEV e i jV i (j) (Pi , Pj) (8) 
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r;2 (1- Pi) (1- Pj) . And eij is the probability that the agent 
i selects agent j to interact with. 

Each agent i updates its strategy in order to maximize the 
value of V;. Recall the equation 3 and 4, we can obtain 

p� k+l) = 1l!l [ p� k) + 110PYi(PI, P2, ... , PN)] 

= 11'1 [ p� k) + 11 (Ui L. jEV eijPj + c i) ] 

where parameter 11 is the size of gradient step. 

(9) 

As 11p -+ 0, it is straightforward that the equation 9 
becomes differential equation. Considering the step size to be 
infinitesimal, the unconstrained dynamics of the all players' 
strategies can be modeled by the following model. 

Equation 10 can be simplified into P = U EP + C, 
where P = (Pl, P2, ... , PNl, P = (Pl, h, ... , PN) T  and C = 
(Cl, C2, ... , CNl. The matrix U = diag(uI,u2, ... ,u N) is the 
diagonal matrix generated by (u I, U2, ... , UN) . 

For the constrained dynamics of the strategies, we can 
model it as the following equations, { Pi = 0 Pi = 0/\ Gi :s; 0 

Pi = 0 Pi = 1/\ Gi ?: 0 
Pi = G; otherwise 

where Gi = Ui LjEV eijPj + Ci· 

(11) 

Notice that equation 11 is a hybrid system composed of 
two parts: a series of continuous linear differential dynamic 
systems in the respective domain space and a switch mech­
anism between differential dynamic systems when dynamic 
touch the boundary. Generally, it is hard to obtain a complete 
conclusion by analyzing dynamics of a general hybrid sys­
tem, even though the differential system is linear. But we can 
still find some convergence and non-convergence conditions 
under certain instances(i.e.,equation 11). 

A. Non-convergence condition of the multiagent learning 
framework 

According to the above definition, we have the following 
general result under which non-convergence is guaranteed. 

Theorem 1: In an N agent, two-action, integrated general 
sum game, every player follows the constrained dynamics of 
the strategy we defined in equation 11, if the following two 
conditions are met: 

1) There exists a point P* = (pi , pi, ... , PH) E (0, It, that 
UEP*+C=O. 

2) There exists a pair of pure imaginary eigenvalues of 
matrix UE. 

Then there exists a set IF' C [O,I]N such that the solution 
of the initial value problem of equation 11 with P (0) E IF' 
that can not converge. 

Proof· Considering the complexity of the hybrid func­
tions, we begin with the unconstrained ones first. Based on 
the differential equations dynamical systems theorems[19j, 
we calculate the analytic solution of equation ?? Homoge­
nizing the in-homogeneous equation by substituting P with 
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P=X+P*, where UEP*+C=O, we getX=UEX. Here, 
U E is an N x N matrix, then there is a invertible matrix 
T = (VI, ... , VN) that can transform U E into J, 

T-1 U ET = J = 
[
�I 

.
] 

: J�n 
The Ji is a square matrix and its form is one of the 

fOI;::[1 T J (2
f 2, J, 

D, 
Where D2 = [_af3 �] , h = r� �] , a, 13)" E lR and 13 # 

O. Here, J is the Jordan norma� form of matrix U E. Ji is 
the Jordan block corresponding to \, which is a repeated 
eigenvalue of U E with multiplicity ni. If eigenvalue Ai is a 
real number, then J; is in the form (1), else (2). Suppose that 
A], . . . ,Ak are matrix UE's real eigenvalues, and Ak+l, ... ,A,n 
is matrix U E's complex eigenvalues, then we have n 1+ ... + 
nk + 2 (nk+1 + ... nm) = N. 

Then the analytic solution of function X = U EX with 
ini:::::I::�:�E;:::) C

� T 
[etll ] 

T-IX(O) 
ellm � ::�: '::

p 

::�:�:)y � )
[
;;;- LX (I), W'] h:;:

) 
elllll 

Suppose that Ak = f3i is a pure imaginary eigenvalue of 
UE with multiplicity nb �k = -f3i is an eigenvalue of UE 
Wi:: :rIiC2, n, 

l:iili'�,F��n:: �I[;�J" �l ' 
Due to etD2 = exp (t [_013 g]) = [���:�t �����] , 

there must exist a pair of items about vector Y (t) as follows. 

{ Yi (t) = Yi(O) cosf3t+Yi+1(O) sinf3t 
Yi+l (t ) = -Yi(O) cosf3t+Yi+l(O) sinf3t (12) 

If y;(O) # 0 VY;+I (0) # 0, then equation 12 has a periodic 
solution. Let Vi and Vi+1 to denote eigenvector of T = 
(VI, ... ,VN) corresponding to Ak and �b respectively. Note 
that X (t) = TY (t), then the solution of equation ?? with the 
initial value P (0) E S is cyclical, where 

S = {p E [0, I]NIP = klvl +k2v2 +p* ,kl ,k2 E lR} 

Because of P* E (0, It, there must exists a £ > 0 for the 
deleted neighborhood JR( P*; £) C (0, 1 t of P*, 

JR (P*;£ ) = {x E lRNIO < Ilx- P*112 < £} C (0, It 
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Let lP' denote SnJR (p*;£ ) , the solution of the equation 
11 with any initial value belongs to lP' is cyclical, which 
means the algorithm corresponding to the equation 11 can 
not converge. • 

Theorem 1 shows that there exist some situations in 
which the agents fail to converge under the multiagent social 
learning framework. 

B. Convergence condition of the multiagent learning frame­
work 

In most cases, the conditions that guarantee the conver­
gence of a algorithm are more valuable. 

Theorem 2: In an N agent, two-action, integrated general 
sum game, every player follows the constrained dynamics of 
the strategy we defined in equation 11, if the following two 
conditions are met: 

1) There exists a point P* = (pi ,pi, · · · ,P H) E (0,1 t, that 
UEP*+C=O. 

2) All of the eigenvalues of matrix U E has negative real 
part. 

Then all the solutions of the initial value problem of 
equation 11 with P (0 ) E [O,I]N will converge eventually. 

Proof' The conclusion is obvious. It is known that the 
construction of the linear dynamic system is stable. If all 
eigenvalues of matrix U E have negative real part, then point 
P is a stable equilibrium point. It means that all the solutions 
of the initial value problem of the equation 11 with P (0 ) E 
[0, I]N will converge to P. • 

Theorem 2 proposes a sufficient condition to identify 
the convergence of dynamic in equation 11. We know that 
it is hard to calculate eigenvalues of a matrix with high 
dimensional. Here, we propose a more realistic convergence 
condition which is suitable for multiagent learning frame­
work shown in algorithm 2. 

Theorem 3: In an N agent, two-action, integrated general 
sum game, every player follows the constrained dynamics 
of the strategy we defined in equation 11, if matrix UE is 
sYlmnetrical, then all the solution of the initial value problem 
of equation 11 with P (0 ) E [0, I]N will converge eventually. 

Proof' The eigenvalues of real symmetric matrices are 
real numbers[20]. We analyze all the cases of equation 11 
when all of the eigenvalues of matrix U E are real: 

1) There exists a point P* = (pi ,pi, · · · ,P H) E (0,1 t, that 
UEP*+C=O. 

2) There are no such a point, that U EP* + C = O. 
For case 1), if all eigenvalues of matrix U E are nega­

tive number, then point P is a stable equilibrium points; 
otherwise, all the solutions of the initial value problem of 
the hybrid system with P(O) E [O,I]N will move away from 
P toward boundary of the hybrid system [19]. Because the 
domain of hybrid model 11 has boundary(i.e., P (t) E [0, I]N), 
then there must exists a point pi = (p;, ... , p�) T in the 
boundary of the domain, where (P'i = 01\ Gi ::; 0) V (P'i = 
II\Gi ?: 0 ) for all i E V.  The dynamic P (t ) will converge to 
pi eventually. 
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Similarly, we can find a point pI = (p;, ... , p�) T in the 
boundary of the hybrid system domain in case 2) and the 
dynamic P (t ) will converge to pI eventually. • 

V. EXPERIMENTAL SIMULATION 

In this section, we compare the empirical dynamics of 
the multiagent social learning framework with PHC learners 
with theoretical prediction of our hybrid dynamic model. 
We perform two experiments that satisfy the Theorem 1 and 
Theorem 3, respectively. 

A. A non-convergence multiagent Game 
In this subsection, we consider a 4-agent, two-action 

games. The game is defined as follows, 

RI =R2 = [� 

E� 
[1:2 

1/2 

�] ,R3 =R4 = [� �] 
1/2 ° 1�2

] 
° 1/2 

1/2 ° 1/2 
° 1/2 ° 

Metrix Ri, i E {I, 2, 3,4} is the payoff matrix of agent i, 
and element eij of matrix E is the probability that player i 
selects player j in each interaction. In this game, we have 
UI = U3 = 2, U2 = U4 = -2, CI = C3 = -1, and C2 = C4 = 1. 
Then the unconstrained dynamic model of this game is P = 
U:

E

+:,

[
�:ere� �I �], C = (-1,1, -I,ll. Then this 

-1 ° -1 ° 
game has a P* (1/2, 1/2, 1/2, 1/2l E (0,1)4, which satisfies 
U EP* + C = 0. Matrix U E has a pair of pure imaginary 
eigenvalues which is Al = 2i and Al = 2i. The eigenvectors 
are VI = (0,1/2,0, 1/2)T and V2 = (1/2,0, 1/2,0)T corre­
sponding to Al and A2. Let P (O ) =P* +klvl +k2V2. As long 
as kl and k2 are sufficiently small, according to Theorem 1, 
the solution of the initial value problem of game 1 with P (0) 
can't converge. 

-p1 
----p2 

p3 

0.2 ,: 

Fig. 1. Agent dynamics of game satisfying the conditions of Theorem 1 

In Figure 1, the dynamic solution of the game with initial 
value P (O ) is plotted, where kl = k2 = 0.1. Each of the 
four lines in figure 1 shows the strategy's dynamic changing 
of each agent, respectively. We can see that the strategies 
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of those agents do not converge. Obviously, the simulation 
results are consistent with the theoretical prediction. 

B. A convergence multi-agent Game 

In this subsection, we consider a 4-agent, two-action 
games. The game is defined as follows, 

R; = [� �] ,i E {l,2,3,4} 

E = [1:2 

1/2 

1/2 
° 

1/2 
° 

° 
1/2 

° 
1/2 

Metrix Ri, i E {I, 2, 3, 4} is the payoff matrix of agent i, 
and element eij of matrix E is the probability that player 
i selects player j in each interaction. In this game, we have 
Ui = 2 and Ci = -l,i E {1,2,3,4}. Then the unconstrained 
d[namiC model of this game is P = U E P + C, where U E = 

° 1 ° 1 
1 ° 1 ° 

T . 
° 1 ° 1 ' C = ( -1, -1, -1, -1) . Because matrIx U E 

1 ° 1 ° 
is symmetrica , according to Theorem 3, the solution of the 
initial value problem of this game with any P (0) E [0,1]4 
will converge eventually. 

c.. 

0.9 
" 

0.8 /<:.;�/ 
0.7 I 

'�.�" ". 

0.6 

" ,-il 

E]1 
- --- p2 
.
.
......... p3 
- -.- p4 

0.40 200 400 600 800 1000 1200 1400 1600 1800 2000 
Round 

Fig. 2. Agent dynamics of game satisfying the conditions of Theorem 3 

Figure 2 illustrates dynamics of the PHC learners' strat­
egy for the game with initial value initial value P (O ) = 
(1/2, 1/2, 1/2, 1/2) T. Each of the four lines in figure 2 shows 
the strategy's dynamic changing of each agent, respectively. 
We can see that the strategies of those agents converge even­
tually, which are consistent with the theoretical prediction. 

V I. CONCLUSION 

In this work, we proposed a muItiagent social learning 
framework to model the behavior of agent in biologic envi­
ronment, and theoretically analyzed the dynamics of multi­
agent social learning framework using non-linear dynamic 
theories. We obtain and prove some sufficient conditions 
about convergence or non-convergence by the theoretically 
analysis. It can be used to predict the convergence of the 
system. Experimental results show that the predictions of our 
dynamic model are consistent with the simulation results. 
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