
Self-adaptive PSRO: Towards an Automatic Population-based Game Solver
Pengdeng Li1 , Shuxin Li1 , Chang Yang3 , Xinrun Wang1 ,

Xiao Huang3 , Hau Chan4 and Bo An1,2

1Nanyang Technological University, Singapore
2Skywork AI, Singapore

3The Hong Kong Polytechnic University, Hong Kong SAR, China
4University of Nebraska-Lincoln, Lincoln, Nebraska, United States

{pengdeng.li, shuxin.li, xinrun.wang, boan}@ntu.edu.sg, chang.yang@connect.polyu.hk
xiaohuang@comp.polyu.edu.hk, hchan3@unl.edu

Abstract
Policy-Space Response Oracles (PSRO) as a general
algorithmic framework has achieved state-of-the-art
performance in learning equilibrium policies of two-
player zero-sum games. However, the hand-crafted
hyperparameter value selection in most of the ex-
isting works requires extensive domain knowledge,
forming the main barrier to applying PSRO to differ-
ent games. In this work, we make the first attempt
to investigate the possibility of self-adaptively de-
termining the optimal hyperparameter values in the
PSRO framework. Our contributions are three-fold:
(1) Using several hyperparameters, we propose a
parametric PSRO that unifies the gradient descent
ascent (GDA) and different PSRO variants. (2) We
propose the self-adaptive PSRO (SPSRO) by casting
the hyperparameter value selection of the paramet-
ric PSRO as a hyperparameter optimization (HPO)
problem where our objective is to learn an HPO pol-
icy that can self-adaptively determine the optimal
hyperparameter values during the running of the
parametric PSRO. (3) To overcome the poor perfor-
mance of online HPO methods, we propose a novel
offline HPO approach to optimize the HPO policy
based on the Transformer architecture. Experiments
on various two-player zero-sum games demonstrate
the superiority of SPSRO over different baselines.

1 Introduction
Policy-Space Response Oracles (PSRO) [Lanctot et al., 2017]
since proposed has been the mainstream algorithmic frame-
work for solving two-player zero-sum games. At each epoch,
PSRO constructs a meta-game by simulating outcomes of all
match-ups of policies of all players and computes the meta-
strategies for all players via a meta-solver. It then trains new
policies for each player against the opponent’s meta-strategy
through an oracle and appends the new policies to the player’s
policy space. The two components – meta-solver and oracle
– determine the nature of PSRO and various PSRO variants
have been proposed [Balduzzi et al., 2019; Muller et al., 2020;
Marris et al., 2021]. Despite the advancements, determining

the hyperparameter values in PSRO is non-trivial [Smith et
al., 2021] and typically involves extensive domain knowledge,
which impedes it from broader real-world applications.

Precisely, one needs to determine the meta-solver and the
best response (BR) oracle when instantiating PSRO. On one
hand, existing works have suggested various meta-solvers
such as uniform [Heinrich and Silver, 2016], Nash equilib-
rium [Lanctot et al., 2017], α-Rank [Muller et al., 2020], and
correlated equilibrium [Marris et al., 2021]. However, we ob-
serve that none of the meta-solvers can consistently beat all the
others in terms of learning performance during game solving.
On the other hand, the BR policies of a player are typically
obtained via a deep reinforcement learning (RL) oracle, e.g.,
DQN [Mnih et al., 2015], which involves the initialization and
the number of updates of the BR policies. Unfortunately, the
determination of these hyperparameter values in most of the
existing works is often domain-specific (e.g., poker, soccer).
Therefore, an important question is: Can we automatically
determine the optimal hyperparameter values in PSRO?

In this work, we make the first attempt to answer this ques-
tion. Specifically, we first propose a parametric PSRO (PP-
SRO) by introducing two types of hyperparameters: i) game-
free hyperparameters are the weights of different meta-solvers
considered during game solving, and ii) game-based hyper-
parameters are the initialization and the number of updates
of a player’s BR policies. PPSRO provides a general frame-
work to unify the gradient descent ascent (GDA) [Fiez and
Ratliff, 2021] and various PSRO variants [Ho et al., 1998;
Balduzzi et al., 2019; Muller et al., 2020; Marris et al., 2021].
Then, a natural problem is how to determine the hyperparam-
eter values of PPSRO. To solve this problem, we propose a
novel framework, self-adaptive PSRO (SPSRO), by casting
the hyperparameter value selection of PPSRO as a hyperpa-
rameter optimization (HPO) problem where our objective is to
learn an HPO policy that can self-adaptively select the optimal
hyperparameter values of PPSRO during game solving. A
straightforward method to optimize the HPO policy is to use
online approaches such as Optuna [Akiba et al., 2019]. Unfor-
tunately, online HPO methods only use online generated data
(past epochs of SPSRO), typically constraining the training ob-
jectives to be cheaply computable [Chen et al., 2022] and the
performance could be poor. To overcome these limitations, we

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

139

propose an offline HPO approach to optimize the HPO policy
based on the Transformer architecture [Vaswani et al., 2017;
Chen et al., 2021]. Specifically, we formulate the HPO policy
optimization as a sequence modeling problem where a Trans-
former model is trained by using an offline dataset and then
used to predict the hyperparameter values conditioned on past
epochs of SPSRO. Intuitively, a well-trained HPO policy has
the potential to transfer to different games, reducing the effort
needed for researchers to conduct the costly hyperparameter
tuning when applying PSRO to various games.

In summary, the contributions of this work are three-fold:
(1) By introducing several hyperparameters, we propose a
parametric version of PSRO (PPSRO) which unifies GDA and
various PSRO variants. (2) We propose a novel framework,
self-adaptive PSRO (SPSRO), by formulating an optimization
problem where our objective is to learn an HPO policy that can
self-adaptively determine the optimal hyperparameter values
of PPSRO. (3) To overcome the poor performance of classic
online HPO methods, we propose an offline HPO approach to
optimize the HPO policy based on the Transformer architec-
ture. We evaluate the effectiveness of our approach through
extensive experiments on a set of two-player zero-sum games,
and the results demonstrate that SPSRO with Transformer
performs significantly better than different baselines.

2 Related Works
PSRO [Lanctot et al., 2017] generalizes the double oracle algo-
rithm [McMahan et al., 2003] and unifies various multi-agent
learning methods including the fictitious play (FP) [Robinson,
1951; Brown, 1951], neural fictitious self-play (NFSP) [Hein-
rich and Silver, 2016] (an extension of FP in the context of
deep RL), iterated best response (IBR) [Ho et al., 1998], and
independent reinforcement learning (InRL) [Matignon et al.,
2012]. Recently, many works have been done toward im-
proving PSRO, including the scalability [McAleer et al., 2020;
Smith et al., 2021], diversity of BRs [Perez-Nieves et al., 2021;
Liu et al., 2021], the introduction of novel meta-solvers, e.g.,
α-Rank [Muller et al., 2020], correlated equilibrium [Mar-
ris et al., 2021], and neural meta-solver [Feng et al., 2021],
and application to mean-field games [Muller et al., 2022].
Moreover, the challenging strategy exploration problem has
also been extensively investigated [Wellman, 2006; Schvartz-
man and Wellman, 2009b; Schvartzman and Wellman, 2009a;
Jordan et al., 2010; Wang et al., 2022]. Despite the advance-
ments, a critical observation we obtained is that given a set of
meta-solvers, none of them can consistently beat (dominate)
all the others in terms of learning performance during game
solving (in the sense that we just evaluate PSRO as an online
algorithm). On the other hand, the BRs of a player are typi-
cally obtained via a deep RL oracle such as DQN [Mnih et
al., 2015], where the hyperparameters (e.g., the initialization
and the number of updates) are often domain-specific (e.g.,
poker, soccer) and most of the existing works manually select
the hyperparameter values based on domain knowledge. In
this work, we develop a novel framework to self-adaptively
determine the optimal hyperparameter values in PSRO, which
can be transferred to different games without fine-tuning.

Another line of related work is hyperparameter optimization

(HPO). Existing works on HPO can be roughly categorized
into online and offline HPO. The classic online HPO meth-
ods include Bayesian optimization [Snoek et al., 2012] and
its variants [Krause and Ong, 2011; Bardenet et al., 2013;
Swersky et al., 2013; Feurer et al., 2015; Volpp et al., 2019;
Wistuba and Grabocka, 2020; Rothfuss et al., 2021], and re-
current neural networks (RNNs) [Duan et al., 2016; Wang et
al., 2016; Chen et al., 2017]. However, online HPO methods
only use online generated data, typically constraining the train-
ing objectives to be cheaply computable and the performance
could be poor. Our work is closely related to [Chen et al.,
2022] which proposes the first offline Transformer-based HPO
method. Nevertheless, it is non-trivial to optimize the HPO
policy as it involves several critical challenges such as how to
generate an offline dataset for training. To our knowledge, this
work is the first attempt to explore and develop a self-adaptive
hyperparameter value selector in game theory.

3 Preliminaries
In this section, we first present the game definition and then
the procedure of the PSRO algorithm.

3.1 Games
Consider a two-player zero-sum game represented by a tuple
G = (N ,S,A, p, {ri}i∈N , T), where players are indexed by
N = {1, 2}. Let N = |N | = 2. S and A denote the players’
state and action spaces, respectively. T = {0, 1, · · · , T} is
time index set. At t ∈ T , player i in state sit ∈ S takes an ac-
tion ait ∈ A and then changes to new state sit+1 ∼ p(·|st,at)

and receives a reward ri(st,at), where st = (sit)i∈N and
at = (ait)i∈N are respectively joint state and joint action of
all players, p : SN × AN → ∆(S)1 is the transition func-
tion and ri : SN × AN → R is the reward function with∑

i∈N ri(st,at) = 0. Let πi : S → ∆(A) denote the player
i’s policy (strategy)2 with πi ∈ Πi where Πi is the policy
space. Given the joint policy of all players π = (πi)i∈N ∈
Π = ×i∈NΠi, each player i aims to maximize his own value
function V i(π, s0) = E

[∑T
t=0 r

i(st,at)|at ∼ π, st+1 ∼
p
]
, where s0 is the players’ initial states.
A mixed strategy σi ∈ ∆(Πi)3 is called a meta-strategy

which is the probability distribution over the player i’s pol-
icy space Πi. More precisely, suppose that there are c ≥ 1
policies in player i’s policy space, then the meta-strategy of
i is σi = (σi,1, · · · , σi,c) with σi,j ≥ 0 and

∑c
j=1 σ

i,j = 1.
Accordingly, σ = (σi)i∈N ∈ ∆(Π) is the joint meta-strategy
of all players. Given the joint meta-strategy of all players
except i, σ−i, the expected payoff to player i’s policy πi ∈ Πi

is given by Ri(πi,σ−i) =
∑

π−i∈Π−i σ−i(π−i)V i(πi,π−i)
and the set of best responses (BRs) of player i is defined as
BRi(σ−i) = argmaxπi∈Πi Ri(πi,σ−i). The quality of σ
can be measured by the NashConv [Lanctot et al., 2017].
For player i ∈ N , the NashConv is defined as Ri(σ) =

1∆(X) denotes the probability distribution over the space X .
2We interchangeably use policy and strategy in this work.
3In principle Πi could be an infinite set. However, Πi is typically

iteratively expanded by learning algorithms such as PSRO and hence,
is considered finite in this work.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

140

Ri(BRi(σ−i),σ−i) −∑
πi∈Πi σi(πi)Ri(πi,σ−i). That is,

the NashConv of player i is the gain he can obtain when he
unilaterally deviates from the current joint meta-strategy to a
(pure) BR strategy. Therefore, the quality of σ is measured by
the total NashConv of all playersR(σ) = ∑

i∈N Ri(σ).

3.2 Policy-Space Response Oracles
Given a game, PSRO first initializes the policy space of each
player Πi using randomly generated policies and then expands
the policy space in three iterated phases4 (as shown in Fig-
ure 2): (1) Synthesize a meta-game with all match-ups of
policies of all players and compute the missing payoff entries
in the payoff tensor M via simulation. (2) Compute the joint
meta-strategy σ using a meta-solverM on the synthesized
meta-game M . Different meta-solvers can be used during
training, e.g., Nash equilibrium [Lanctot et al., 2017], corre-
lated equilibrium [Marris et al., 2021], α-Rank [Muller et al.,
2020], and uniform distribution [Heinrich and Silver, 2016].
(3) Compute each player i’s BR πi,BR using an oracleOi given
the joint meta-strategy σ and add the BR πi,BR to player i’s
policy space Πi. As the other player’s policy spaces Π−i and
joint meta-strategy σ−i are fixed, the computation of BR is a
single-player optimization problem from player i’s perspec-
tive. In practice, the best response is typically approximated
by using deep RL algorithms, e.g., DQN [Mnih et al., 2015].
Specifically, the best response πi,BR is trained for K updates,
given that the other player uses the policy π−i ∼ σ−i, i.e.,
π−i is sampled according to σ−i.

4 Motivating Example
In this section, we provide some examples to better illustrate
the motivation of this work. Consider a two-player zero-sum
normal-form game (NFG) of size |A1| × |A2|. Let M denote
the set of meta-solvers of interest. In this example (as well as
this work), we consider the most commonly used three meta-
solvers: Uniform [Heinrich and Silver, 2016], α-Rank [Muller
et al., 2020], and PRD [Lanctot et al., 2017]. We conduct two
types of experiments: i) consistently using a single meta-solver
during the PSRO procedure, and ii) switching the meta-solver
from one to another at some intermediate iteration of the PSRO.
The results are shown in Figure 1.

0 10 20 30 40 50
Epoch

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

N
as
hC

on
v

NFG-50×50
Uniform
PRD
-Rank

Uniform PRD
-Rank PRD

Switch

0 10 20 30 40 50
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
NFG-200×200

Uniform
PRD
-Rank

Uniform -Rank
PRD -Rank
Switch

Figure 1: NashConv of different PSRO runs.

From the results, we can obtain the following observations.
(1) For the three meta-solvers, none of them can consistently

4Note that throughout this work, e always represents the index of
PSRO epoch, neither the power of e nor the Euler’s number.

beat (dominate) all the others in terms of NashConv during the
PSRO procedure. For instance, at the early stage of the PSRO
procedure, Uniform performs better than the other two meta-
solvers in terms of NashConv. However, it only converges to
a high NashConv value, which is also observed in previous
works [Muller et al., 2020]. (2) By switching from one meta-
solver to another during the PSRO procedure, we can achieve
better learning performance in terms of NashConv. Moreover,
the comparison between the two cases: “α-Rank → PRD”
and “PRD→ α-Rank”, again verifies the previously observed
fact that none of the meta-solvers can consistently beat all the
others in terms of NashConv during the PSRO procedure5.

The above observations motivate us to think about a natu-
ral question: How to determine the meta-solvers during the
PSRO procedure such that we can obtain better learning per-
formance? Note that the examples in Figure 1 are NFGs. For
extensive-form games (EFGs), in addition to the meta-solver,
the hyperparameters also include the initialization of a BR
policy πi,BR and the number of updates K for training the BR
policy. Most of the existing works determine the values of
these hyperparameters by hand-crafted tuning, which typically
requires extensive domain knowledge.

Thus, a critical problem to be addressed is: how to automat-
ically determine the optimal hyperparameter values during
the PSRO running? Specifically, at each epoch, we need to
i) choose one or multiple meta-solver(s), ii) determine how
to initialize the new BR policies, e.g., random initialization,
copy from one of the previous BRs, or mix, and iii) determine
the number of updates K of the new BR policy of each player.
In this work, we make the first attempt to develop a novel
framework that can self-adaptively determine the optimal hy-
perparameter values during the PSRO running.

5 Self-adaptive PSRO
In this section, we establish the Self-adaptive PSRO (SPSRO)
through two steps: (1) We parameterize the PSRO algorithm
(PPSRO) by introducing several hyperparameters. (2) We cast
the hyperparameter value selection of PPSRO as a hyperpa-
rameter optimization (HPO) problem where our objective is
to learn an HPO policy that will self-adaptively determine the
optimal hyperparameter values of PPSRO.

5.1 Parametric PSRO
First, inspired by the observations in the previous section,
in this work, instead of considering a single meta-solver as
most of the existing works, we use the meta-solver set Mα

with m different meta-solvers and associate it with a vec-
tor α = (α1, · · · , αm) specifying the weight of each meta-
solver. Intuitively, by combining multiple meta-solvers, we
could obtain better performance. As α is only dependent on

5These observations are different from [Wang et al., 2022] which
regards the strategy exploration and its evaluation as two orthogonal
components. For example, one can use PRD to guide the BR policies
computation but use α-Rank to compute the meta-distribution for
decision-making after the new BR policies of players are added to
their respective policy spaces. However, it is worth noting that our
observations do not cause inconsistency with [Wang et al., 2022] as
we just evaluate PSRO as an online algorithm.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

141

the meta-game payoff tensor M regardless of the underlying
games (normal-form or extensive-form games), we refer to the
weights in it as game-free hyperparameters.

Second, we introduce a parametric BR oracle Oi(σ;β,K)
where the hyperparameters include6: (1) the initialization
parameter β ∈ [0, 1] which determines the initialization of
the new BR policy of player i by mixing the BR policy ob-
tained in the last epoch with a randomly initialized policy
πi,random, and (2) the number K which determines the num-
ber of updates needed for training the new BR policy. For-
mally, at each epoch e, we initialize player i’s BR policy as
πi,BR,e = βπi,BR,e−1 + (1− β)πi,random, and then update this
BR policy πi,BR,e for K steps. After that, the trained BR pol-
icy πi,BR,e is added to player i’s policy space Πi. As β and
K are highly dependent on the underlying games (e.g., poker,
soccer), we refer to them as game-based hyperparameters.

By specifying α, β and K, we can obtain GDA and various
PSRO variants (Table 1). For example, GDA can be instan-
tiated as follows. Suppose thatMb is the meta-solver “Last-
One”, then we set αb = 1 and αd̸=b = 0, which implies that
the meta-strategy of player i is σi

b = (σi,1
b = 0, · · · , σi,e−1

b =
1) at epoch e. Then, player i initializes the BR policy πi,BR,e

with β = 1 and trains πi,BR,e with K = 1 update.

Algorithm Mα Oi(σ;β,K)

GDA Last-One β = 1 & K = 1
InRL Last-One β = 1 & K = K̄
PSROP Penultimate β ∈ [0, 1] & K = K̄
PSROU Uniform β ∈ [0, 1] & K = K̄
PSRON Nash β ∈ [0, 1] & K = K̄
PSROrN Rectified Nash β ∈ [0, 1] & K = K̄
PSROα-Rank α-Rank β ∈ [0, 1] & K = K̄
PSROCCE Coarse Correlated β ∈ [0, 1] & K = K̄

Table 1: Specifications of PSRO variants. K̄ is the number of up-
dates needed to obtain a converged BR policy. The references for
these methods: GDA [Fiez and Ratliff, 2021], InRL [Matignon et
al., 2012], PSROP [Ho et al., 1998], PSROU [Heinrich and Silver,
2016], PSRON [Lanctot et al., 2017], PSROrN [Balduzzi et al., 2019],
PSROα-Rank [Muller et al., 2020], PSROCCE [Marris et al., 2021].

5.2 HPO Policy Optimization
With the PPSRO introduced in the previous section, a natural
problem is how to determine the values of α, β, and K in
PPSRO. To address this problem, we propose a novel algo-
rithmic framework, Self-adaptive PSRO (SPSRO), which is
shown in Figure 2 and Algorithm 1. In the following, we first
present the overall procedure of SPSRO, then define the per-
formance metric of a given selection of hyperparameter values,

6There could be other hyperparameters such as batch size in the
BR oracle. Nevertheless, as the first attempt to explore the possibility
of self-adaptively determining the optimal hyperparameter values,
we focus on the ones that enable us to unify various PSRO variants.
Moreover, it is worth noting using the same type of BR oracle (DQN
in this work) with the same configuration for all the other hyper-
parameters is important to ensure a fair comparison between our
approach and baselines. See Appendix A for more discussion.

and finally formalize the hyperparameter optimization (HPO)
problem where our objective is to learn an HPO policy that
will self-adaptively select the optimal hyperparameter values
of PPSRO during game solving.

Let τ ∈ Γ denote an HPO policy where Γ is the policy space.
Let ue = (αe, βe,Ke) ∈ U denote the hyperparameter values
selected according to the HPO policy τ at each epoch e ≥ 1 of
SPSRO, where U is the admissible set of the hyperparameter
values. That is, we have ue ∼ τ . We run one epoch of SPSRO
as follows. (1) Compute the payoff tensor M through game
simulation (Line 3). (2) Compute the final joint meta-strategy
σe (Line 4). (3) Expand each player’s policy space (Line 5).
Specifically, for each player i, we initialize the BR policy as
πi,BR,e = βeπi,BR,e−1 + (1− βe)πi,random, and then train the
BR policy πi,BR,e for Ke updates and add it to player i’s policy
space Πi = Πi ∪ {πi,BR,e}. (4) Compute the performance
metric ye(ue) of the current selection (Line 6). (5) Select new
hyperparameter values ue+1 according to τ (Line 7).

M

Meta-solvers

M
{
σ1, . . . , σi, . . . , σN

}
Meta-strategy

Oβ,K Oracle

{
Π1, . . . ,Πi, . . . ,ΠN

} {
π1, . . . , πi, . . . , πN

}

Game simulation

Add

τ

α

(β,K)

Figure 2: Illustration of Self-adaptive Policy-Space Response Ora-
cles (SPSRO). PSRO and PPSRO are two special cases of SPSRO.
Illustration inspired by [Muller et al., 2020].

Algorithm 1 SPSRO

1: Initialize Πi with random policies, ∀i ∈ N , e← 1, select
initial hyperparameter values u1 = (α1, β1,K1), τ ∈ Γ

2: for epoch e ∈ {1, 2, 3, . . . } do
3: Update payoff tensor M via game simulation
4: Compute σe using M and αe: σe =

∑m
b=1 α

e
bσ

e
b

5: Expand policy spacesOi: Πi ← Πi∪Oi(σe;βe,Ke)
6: Compute the performance metric ye(ue)
7: Select new hyperparameter values ue+1 ∼ τ
8: end for

Given a selection of the hyperparameter values ue, we de-
fine its performance metric as ye(ue) = R(σe)

R(σ1) +
he

h1 , where
he is the run-time of BR training at the e-th epoch. Roughly
speaking, it consists of two parts: the NashConv of all players
and the BR training effort, which implies that using larger
Ke could obtain lower NashConv R(σe) from the long-run
standpoint but at the cost of longer BR training time he, and
using smaller Ke could shorten the BR training time while at
the cost of higher NashConvR(σe).

Given the performance metric, our objective is to learn an
HPO policy τ by solving the following HPO problem: ∀e ≥ 1,

argminτ∈Γ y
e(ue ∼ τ). (1)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

142

6 A Novel Offline HPO Algorithm
The most straightforward method to optimize the HPO policy
is to employ the classic HPO methods such as Bayesian opti-
mization [Snoek et al., 2012]. However, most HPO methods
typically predict hyperparameter values based on online gen-
erated data (history of past epochs in our work), which could
be less efficient in exploring the space of the hyperparameter
values, and thus, the performance could be poor. To overcome
the limitations of online HPO, we propose a novel offline
HPO method to optimize the HPO policy, which possesses the
potential to transfer to different games without fine-tuning.

6.1 HPO as Sequence Modeling
As presented in Algorithm 1, selecting the hyperparameter
values in SPSRO can be naturally regarded as a sequence
modeling problem where we model the probability of the
next token xe conditioned on all prior tokens: Pθ(x

e|x<e),
similar to the decoder-only sequence models [Zhao et al.,
2023; Touvron et al., 2023]. Specifically, we consider the
sequence of hyperparameter values up to e-th epoch:

He = (· · · , αe
1, · · · , αe

m, βe,Ke, ye). (2)

Figure 3 presents the overview of the architecture.

Casual Transformer· · · · · ·

ye−1 αe
1

· · · αe
m βe Ke

yeαe
1 · · ·αe

2 βe
Ke

Figure 3: HPO based on Transformer. At each epoch, the Transformer
model predicts parameter values in an autoregressive manner using a
causal self-attention mask, i.e., each predicted parameter value will
be fed into the model to generate the next parameter value.

6.2 Tokenization
We convert each element in Eq. (2) into a single token. The
idea is to normalize and discretize each element such that it
falls into one of Q bins each with size 1. Q is referred to as
the quantization level. Specifically, we have:

x̄e = int[xe
norm ·Q], (3)

where xe
norm = (xe − xmin)/(xmax − xmin). xmin and xmax are

determined by the space U and the range of ye is determined
by observed values in the offline dataset (introduced in the
next subsection) or the underlying games (e.g., normal-form
and extensive-form). After tokenization, we have:

H̄e = (· · · , ᾱe
1, · · · , ᾱe

m, β̄e, K̄e, ȳe). (4)

6.3 Training Dataset
To train the Transformer model θ, one of the critical steps is
to generate the offline dataset, which is non-trivial due to the
computational complexity of running SPSRO. Specifically, to
generate a dataset D consisting of |D| sequences of Eq. (2) or

Eq. (4), we need to run the SPSRO for |D| times. However,
it is well-known that running PSRO can be computationally
difficult in complex games. One of the main difficulties is that
solving the meta-game using α-Rank could be NP-hard [Yang
et al., 2020] and as it requires enumerating all the joint strate-
gies to construct the response graph [Omidshafiei et al., 2019],
it is time-consuming as the progress of the PSRO procedure.
To more efficiently generate the dataset, we use a simple prun-
ing technique to constrain the size of the support set of the
meta-strategy when using α-Rank to solve the meta-game.

Let C denote the maximum size of the support set of the
meta-strategy. At the first C epochs, we follow the standard
PSROα-Rank. After that, at each epoch e > C, we construct
the meta-game of size (C + 1)× (C + 1) where a new BR is
obtained by deep RL algorithms. Next, we compute the meta-
distribution by solving the meta-game via α-Rank. Let πi

min
denote the policy with the minimum probability in the meta-
distribution. Then, we get the final meta-strategy by setting
σi,e
α-Rank(π

i
min) = 0 and normalizing the resulting distribution.

During the dataset generation, we employ the widely used
tool, Optuna [Akiba et al., 2019] (not the target HPO policy
τ), to determine the value of ue. Using the terminology of
offline RL [Levine et al., 2020; Chen et al., 2021], Optuna is a
behavior policy to generate the offline training dataset (see Ap-
pendix B for the code of Optuna showing how to generate the
dataset). Furthermore, we distinguish between normal-form
games (NFGs) and extensive-form games (EFGs) when gener-
ating the dataset. The primary reason is that the parameters of
interest are different. In EFGs, in addition to the weights of
different meta-solvers α, Eq. (2) also includes the parameters
related to the BR oracle, β and K. Therefore, the transformer
model trained on the NFG dataset cannot be directly applied
to EFGs. In addition, generating the NFG dataset is relatively
easier as the computational difficulty mainly resulted from the
meta-game solving using α-Rank, which can be effectively ad-
dressed by the previously proposed pruning technique. For the
EFG dataset, obtaining the BR policies requires extra computa-
tional overhead as the BR policies are typically approximated
via deep RL algorithms such as DQN [Mnih et al., 2015].

6.4 Loss Function and Inference
Given the dataset D, we train the Transformer model θ by
maximizing the log-likelihood for each sequenceHē ∼ D:

L(θ;Hē) =
∑ē(m+3)

n=1
logPθ(H̄n|H̄1:n−1), (5)

where ē is the maximum number of epochs, H̄n is the n-th
token in Eq. (4), and H̄1:n−1 is all tokens up to the (n− 1)-th
token in Eq. (4). After training, we can apply the Transformer
θ to a given game to predict the value of ue. Specifically, we
reverse the tokenization to obtain the token distribution:

pθ(x|·) =
Q · Pθ(x̄|·)

(xmax − xmin)
. (6)

Then, we can sample ue from the model’s prior distribution
and thus, define the HPO policy as follows:

τ(ue|He−1) =
∏m

b=1
pθ(α

e
b|He−1, αe

1, · · · , αe
b−1)

× pθ(β
e|He−1, {αe

b}1≤b≤m)

× pθ(K
e|He−1, {αe

b}1≤b≤m, βe).

(7)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

143

0 10 20 30 40 50
Epoch

10 1

100

N
as
hC

on
v

NFG-200×200

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 100 200 300 400 500 600 700 800
BR-Time(s)

10 1

100

N
as
hC

on
v

Leduc-Poker

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 10 20 30 40 50
Epoch

10 1

100

NFG-150×150

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 10 20 30 40 50
Epoch

10 1

100

NFG-250×250

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 10 20 30 40 50
Epoch

10 1

100

NFG-100×200

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 10 20 30 40 50
Epoch

10 1

100

NFG-150×300

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 200 400 600 800 1000
BR-Time(s)

10 1

100

Goofspiel

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 100 200 300 400 500 600 700 800
BR-Time(s)

10 1

100

Liars-Dice

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 200 400 600 800 1000 1200
BR-Time(s)

10 1

100

101

Negotiation

GDA
Uniform
PRD

-Rank
Optuna
Transformer

0 200 400 600 800 1000
BR-Time(s)

1.0

1.2

1.4

1.6

1.8

2.0
Tic-Tac-Toe

GDA
Uniform
PRD

-Rank
Optuna
Transformer

Figure 4: Evaluation performance. The top and bottom rows correspond to NFGs and EFGs, respectively.

That is, at epoch e, τ predicts each parameter value in ue

conditioned on: i) the sequence of past epochsHe−1, and ii)
the values of the preceding predicted parameters.

7 Experiments
In this section, we evaluate the effectiveness of SPSRO.

7.1 Experimental Setup
All experiments are performed on a machine with a 24-core
3.2GHz Intel i9-12900K CPU and an NVIDIA RTX 3060
GPU, and the results are averaged over 30 independent runs.
Games. We consider the following games. (1) Normal-form
games (NFGs) of size |A1| × |A2|. The payoff matrices are
randomly sampled from the range [−1, 1]. The set of size is
{150 × 150, 200 × 200, 250 × 250, 100 × 200, 150 × 300}.
(2) Extensive-form games (EFGs): Leduc, Goofspiel, Liar’s
Dice, Negotiation, and Tic-Tac-Toe, which are implemented
in OpenSpiel [Lanctot et al., 2019].
Methods. (1) GDA [Fiez and Ratliff, 2021]. At each epoch, a
player only best responds to the opponent’s newest BR action
(NFGs) or policy (EFGs). (2) Uniform [Heinrich and Silver,
2016]. The meta-distribution is the uniform distribution. (3)
PRD [Lanctot et al., 2017; Muller et al., 2020], an approxima-
tion of Nash equilibrium. We choose PRD instead of an exact
Nash solver as it has been widely adopted in PSRO-related
research. (4) α-Rank [Muller et al., 2020]. (5) Optuna [Akiba
et al., 2019]. (6) Transformer. Among these methods, (2) to
(4) are classic PSRO methods, while (5) and (6) are SPSRO
methods involving multiple meta-solvers and different HPO
policies. Note that, although our work is related to NAC [Feng
et al., 2021], directly comparing NAC with our method is not
suitable as NAC does not serve as a base component in our
mixing method due to extra computational cost for training
the neural meta-solver.
Training and Testing. We generate the training datasets for
NFGs and EFGs separately. For NFGs, we generate the dataset
on the game of size |A1| × |A2| = 200× 200. For EFGs, we
generate the dataset on the Leduc Poker. During testing, in
addition to the games used to generate the dataset, we directly

apply the trained Transformer model to the other games to
verify the zero-shot generalization ability of the model.

7.2 Results
The results are summarized in Figure 4. From the results, we
can draw several conclusions as follows.

By combining multiple meta-solvers, we could obtain bet-
ter performance than using a single meta-solver. In all the
NFGs, the final NashConvs of Optuna and Transformer are
lower than that of the classic PSRO baselines considering a
single meta-solver (Uniform, PRD, or α-Rank). For EFGs, in
Negotiation and Tic-Tac-Toe, the final NashConvs of Trans-
former are lower than the classic PSRO baselines. The results
clearly verify the necessity of synergistically integrating mul-
tiple meta-solvers during game solving.

Transformer-based HPO could achieve better performance.
Transformer-based HPO can learn a better prior distribution
of hyperparameter values from offline data, providing a better
scheme for weighting multiple meta-solvers, and therefore,
achieving better performance than Optuna which is an online
method and only relies on past epochs to obtain the prior
distribution of hyperparameter values. In addition, in EFGs,
we found that the NashConv of Optuna decreases quickly, but
converges to a high value (also shown in Figure 5). In contrast,
the Transformer can converge to a lower NashConv, though it
needs a longer time in terms of BR training.

Transformer has the potential to provide a universal and
plug-and-play hyperparameter value selector. As shown in
Figure 4, the trained Transformer model can be applied to
the games that are different from the training dataset: for
NFGs, it can be applied to games with different sizes of action
(strategy) spaces, and for EFGs, it can be applied to different
games even with different reward scale (e.g., the maximum
reward in Goofspiel is 1 while in Negotiation it is 10). This
corresponds to the desiderata of a universal and plug-and-play
hyperparameter value selector as mentioned in Section 6.

Given a set of meta-solvers, none of them can consistently
beat (dominate) all the others during game solving (the ob-
servation in Section 4). This can be derived by comparing
the performance of the three single-solver-based PSRO base-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

144

0 10 20 30 40 50 60
Epoch

1

2

3

4

5

6
N
as
hC

on
v

Leduc-Poker

Optuna
Transformer

0 10 20 30 40 50 60
Epoch

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Goofspiel

Optuna
Transformer

0 10 20 30 40 50 60
Epoch

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Liars-Dice

Optuna
Transformer

0 10 20 30 40 50 60
Epoch

0

10

20

30

40

Negotiation

Optuna
Transformer

0 10 20 30 40 50 60
Epoch

1.0

1.2

1.4

1.6

1.8

2.0
Tic-Tac-Toe

Optuna
Transformer

Figure 5: NashConvs of Optuna and Transformer in different extensive-form games.

lines: Uniform, PRD, and α-Rank. For example, consider
the NFG of size 200 × 200. In the early stage of PSRO, the
NashConv of Uniform is lower than PRD and α-Rank. In the
middle stage, α-Rank quickly surpasses Uniform and PRD,
but Uniform still performs better than PRD. However, in the
final stage, Uniform is beaten by PRD and α-Rank. Moreover,
we note that in the final stage, PRD could also perform better
than α-Rank, as shown in the NFG of size 100× 200. Similar
results are observed in EFGs, further verifying the conclusion.

For EFGs, in Figure 4, at first glance, one may come to the
conclusion that Optuna is a better option than Transformer.
However, we note that the x-axis in Figure 4 is the BR running
time (which is appropriate as in our experiments only one BR
policy is added to each player’s policy space). To avoid this
misleading conclusion, we plot the NashConv versus epoch in
Figure 5. The results clearly show that instead of terminating
too early, Optuna cannot further decrease the NashConv even
if it is given more epochs (10 epochs more than Transformer).
The primary reason we hypothesize is that, as the SPSRO
progresses, it is a struggle for Optuna to balance the two parts
(NashConv and BR training time) in the performance metric
ye. Specifically, at the latter stage of SPSRO, the second term
in ye would dominate the first term, even though they have
been normalized by using the values obtained at the first epoch,
making Optuna suggest a smaller number of updates for the
BR policies (see Figure 7 in Section 7.3), which on the contrary
cannot further decrease the NashConv because the quality
of the BR policies would be low without providing enough
training amount. The results demonstrate that Transformer is
more effective in handling such a dilemma.

7.3 More Discussion
In this section and Appendix C, we provide more discussion
to further deepen our understanding of our approach.

Figure 6 shows the weights of different meta-solvers (Uni-
form, PRD, and α-Rank) determined by Optuna and Trans-
former during SPSRO running. We can see that the weights de-
termined by Optuna vary dramatically throughout SPSRO run-
ning, while Transformer’s predictions are more stable (around
1/3 for each solver). We hypothesize that such a relatively sta-
ble weighting scheme for multiple meta-solvers is necessary
to obtain better performance. In addition, an interesting obser-
vation is that the weights of Uniform and PRD change almost
in a mirror form. More results can be found in Appendix C.

In Figure 7, we found that Optuna and Transformer follow
very different patterns to select the computing amount used
for training the BR policy at each epoch. For Optuna, the num-
ber of episodes suddenly decreases to a very low value after

5 10 15 20 25 30 35 40 455 10 15 20 25 30 35 40 455 10 15 20 25 30 35 40 45
Epoch

0.00

0.25

0.50

0.75

1.00

W
ei
gh
t

Optuna
Uniform -Rank PRD

5 10 15 20 25 30 35 40 455 10 15 20 25 30 35 40 455 10 15 20 25 30 35 40 45
Epoch

0.30

0.32

0.34

0.36

W
ei
gh
t

Transformer
Uniform -Rank PRD

Figure 6: Weights of three meta-solvers determined by Optuna and
Transformer in the NFG of size 200×200.

about 10 epochs. Intuitively, when K is much smaller than K̄
(the maximum number of episodes to obtain a converged BR
policy), the policy obtained through the BR oracle may be far
away from the true BR policy, resulting in poor performance.
This is also reflected in Figure 5 where Optuna cannot obtain
a lower NashConv even if it is given more epochs. In contrast,
by offline learning, Transformer could better trade-off between
the NashConv and BR training time and hence, performs better
than Optuna. More results can be found in Appendix C.

5 10 15 20 25 30 35 40 455 10 15 20 25 30 35 40 45
Epoch

0

2000

4000

N
um

.-o
f-
B
R
-e
pi
so
de
s Optuna Transformer

5 10 15 20 25 30 35 40 455 10 15 20 25 30 35 40 45
Epoch

0

2000

4000
N
um

.-o
f-
B
R
-e
pi
so
de
s Optuna Transformer

Figure 7: Numbers of BR training episodes determined by Optuna
and Transformer in EFGs. (Left) Leduc. (Right) Goofspiel.

8 Conclusions
In this work, we first attempt to explore the possibility of self-
adaptively determining the optimal hyperparameter values in
the PSRO framework and provide three contributions: (1) the
parametric PSRO (PPSRO) which unifies GDA and various
PSRO variants; (2) the self-adaptive PSRO (SPSRO) where
we aim to learn a self-adaptive HPO policy; (3) a novel offline
HPO approach to optimize the HPO policy based on the Trans-
former architecture. The well-trained Transformer-based HPO
policy has the potential of transferring to different games with-
out fine-tuning. Experiments on different games demonstrate
the superiority of our approach over different baselines.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

145

Acknowledgements
This work is supported by the National Research Founda-
tion, Singapore under its Industry Alignment Fund – Pre-
positioning (IAF-PP) Funding Initiative. Any opinions, find-
ings and conclusions, or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore. Hau Chan is
supported by the National Institute of General Medical Sci-
ences of the National Institutes of Health [P20GM130461],
the Rural Drug Addiction Research Center at the University of
Nebraska-Lincoln, and the National Science Foundation under
grant IIS:RI #2302999. The content is solely the responsibility
of the authors and does not necessarily represent the official
views of the funding agencies.

Contribution Statement
Shuxin Li and Chang Yang make equal contributions to this
work. Xinrun Wang is the corresponding author of this work.

References
[Akiba et al., 2019] Takuya Akiba, Shotaro Sano, Toshihiko

Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework.
In KDD, pages 2623–2631, 2019.

[Balduzzi et al., 2019] David Balduzzi, Marta Garnelo,
Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max
Jaderberg, and Thore Graepel. Open-ended learning in
symmetric zero-sum games. In ICML, pages 434–443,
2019.

[Bardenet et al., 2013] Rémi Bardenet, Mátyás Brendel,
Balázs Kégl, and Michele Sebag. Collaborative hyper-
parameter tuning. In ICML, pages 199–207, 2013.

[Brown, 1951] George W Brown. Iterative solution of games
by fictitious play. Activity Analysis of Production and Allo-
cation, 13(1):374, 1951.

[Chen et al., 2017] Yutian Chen, Matthew W Hoffman, Ser-
gio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando Freitas. Learning to learn with-
out gradient descent by gradient descent. In ICML, pages
748–756, 2017.

[Chen et al., 2021] Lili Chen, Kevin Lu, Aravind Rajeswaran,
Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision trans-
former: Reinforcement learning via sequence modeling.
In NeurIPS, pages 15084–15097, 2021.

[Chen et al., 2022] Yutian Chen, Xingyou Song, Chansoo
Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, MarcAurelio
Ranzato, Sagi Perel, and Nando de Freitas. Towards learn-
ing universal hyperparameter optimizers with transformers.
In NeurIPS, pages 32053–32068, 2022.

[Duan et al., 2016] Yan Duan, John Schulman, Xi Chen, Pe-
ter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779, 2016.

[Feng et al., 2021] Xidong Feng, Oliver Slumbers, Ziyu Wan,
Bo Liu, Stephen McAleer, Ying Wen, Jun Wang, and
Yaodong Yang. Neural auto-curricula in two-player zero-
sum games. In NeurIPS, pages 3504–3517, 2021.

[Feurer et al., 2015] Matthias Feurer, Jost Springenberg, and
Frank Hutter. Initializing Bayesian hyperparameter opti-
mization via meta-learning. In AAAI, pages 1128–1135,
2015.

[Fiez and Ratliff, 2021] Tanner Fiez and Lillian J Ratliff. Lo-
cal convergence analysis of gradient descent ascent with
finite timescale separation. In ICLR, 2021.

[Heinrich and Silver, 2016] Johannes Heinrich and David
Silver. Deep reinforcement learning from self-
play in imperfect-information games. arXiv preprint
arXiv:1603.01121, 2016.

[Ho et al., 1998] Teck-Hua Ho, Colin Camerer, and Keith
Weigelt. Iterated dominance and iterated best response in
experimental “p-beauty contests”. The American Economic
Review, 88(4):947–969, 1998.

[Jordan et al., 2010] Patrick R Jordan, L Julian Schvartzman,
and Michael P Wellman. Strategy exploration in empirical
games. In AAMAS, pages 1131–1138, 2010.

[Krause and Ong, 2011] Andreas Krause and Cheng Ong.
Contextual Gaussian process bandit optimization. In
NeurIPS, pages 2447–2455, 2011.

[Lanctot et al., 2017] Marc Lanctot, Vinicius Zambaldi,
Audrūnas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-
theoretic approach to multiagent reinforcement learning. In
NeurIPS, pages 4193–4206, 2017.

[Lanctot et al., 2019] Marc Lanctot, Edward Lockhart, Jean-
Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl
Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Mor-
rill, Paul Muller, Timo Ewalds, Ryan Faulkner, János
Kramár, Bart De Vylder, Brennan Saeta, James Brad-
bury, David Ding, Sebastian Borgeaud, Matthew Lai, Ju-
lian Schrittwieser, Thomas Anthony, Edward Hughes, Ivo
Danihelka, and Jonah Ryan-Davis. OpenSpiel: A frame-
work for reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

[Levine et al., 2020] Sergey Levine, Aviral Kumar, George
Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643, 2020.

[Liu et al., 2021] Xiangyu Liu, Hangtian Jia, Ying Wen, Yu-
jing Hu, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and
Yaodong Yang. Towards unifying behavioral and response
diversity for open-ended learning in zero-sum games. In
NeurIPS, pages 941–952, 2021.

[Marris et al., 2021] Luke Marris, Paul Muller, Marc Lanc-
tot, Karl Tuyls, and Thore Graepel. Multi-agent training
beyond zero-sum with correlated equilibrium meta-solvers.
In ICML, pages 7480–7491, 2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

146

[Matignon et al., 2012] Laetitia Matignon, Guillaume J Lau-
rent, and Nadine Le Fort-Piat. Independent reinforcement
learners in cooperative Markov games: A survey regard-
ing coordination problems. The Knowledge Engineering
Review, 27(1):1–31, 2012.

[McAleer et al., 2020] Stephen McAleer, John B Lanier, Roy
Fox, and Pierre Baldi. Pipeline PSRO: A scalable approach
for finding approximate Nash equilibria in large games. In
NeurIPS, pages 20238–20248, 2020.

[McMahan et al., 2003] H Brendan McMahan, Geoffrey J
Gordon, and Avrim Blum. Planning in the presence of
cost functions controlled by an adversary. In ICML, pages
536–543, 2003.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[Muller et al., 2020] Paul Muller, Shayegan Omidshafiei,
Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel
Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe
Wang, Guy Lever, Nicolas Heess, Thore Graepel, and Remi
Munos. A generalized training approach for multiagent
learning. In ICLR, 2020.

[Muller et al., 2022] Paul Muller, Mark Rowland, Romuald
Elie, Georgios Piliouras, Julien Perolat, Mathieu Lauriere,
Raphael Marinier, Olivier Pietquin, and Karl Tuyls. Learn-
ing equilibria in mean-field games: Introducing mean-field
PSRO. In AAMAS, pages 926–934, 2022.

[Omidshafiei et al., 2019] Shayegan Omidshafiei, Christos
Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Row-
land, Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc
Lanctot, Julien Perolat, and Remi Munos. α-rank: Multi-
agent evaluation by evolution. Scientific Reports, 9(1):9937,
2019.

[Perez-Nieves et al., 2021] Nicolas Perez-Nieves, Yaodong
Yang, Oliver Slumbers, David H Mguni, Ying Wen, and
Jun Wang. Modelling behavioural diversity for learning in
open-ended games. In ICML, pages 8514–8524, 2021.

[Robinson, 1951] Julia Robinson. An iterative method of
solving a game. Annals of Mathematics, pages 296–301,
1951.

[Rothfuss et al., 2021] Jonas Rothfuss, Vincent Fortuin, Mar-
tin Josifoski, and Andreas Krause. PACOH: Bayes-optimal
meta-learning with PAC-guarantees. In ICML, pages 9116–
9126, 2021.

[Schvartzman and Wellman, 2009a] L Julian Schvartzman
and Michael P Wellman. Exploring large strategy spaces
in empirical game modeling. Agent Mediated Electronic
Commerce (AMEC 2009), page 139, 2009.

[Schvartzman and Wellman, 2009b] L Julian Schvartzman
and Michael P Wellman. Stronger CDA strategies through

empirical game-theoretic analysis and reinforcement learn-
ing. In AAMAS, pages 249–256, 2009.

[Smith et al., 2021] Max Smith, Thomas Anthony, and
Michael Wellman. Iterative empirical game solving via
single policy best response. In ICLR, 2021.

[Snoek et al., 2012] Jasper Snoek, Hugo Larochelle, and
Ryan P Adams. Practical Bayesian optimization of ma-
chine learning algorithms. In NeurIPS, pages 2951–2959,
2012.

[Swersky et al., 2013] Kevin Swersky, Jasper Snoek, and
Ryan P Adams. Multi-task Bayesian optimization. In
NeurIPS, pages 2004–2012, 2013.

[Touvron et al., 2023] Hugo Touvron, Thibaut Lavril, Gautier
Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. LLaMA: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NeurIPS, pages 5998–6008, 2017.

[Volpp et al., 2019] Michael Volpp, Lukas P Fröhlich,
Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hut-
ter, and Christian Daniel. Meta-learning acquisition func-
tions for transfer learning in Bayesian optimization. arXiv
preprint arXiv:1904.02642, 2019.

[Wang et al., 2016] Jane X Wang, Zeb Kurth-Nelson, Dhruva
Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick.
Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763, 2016.

[Wang et al., 2022] Yongzhao Wang, Qiurui Ma, and
Michael P Wellman. Evaluating strategy exploration in
empirical game-theoretic analysis. In AAMAS, pages 1346–
1354, 2022.

[Wellman, 2006] Michael P Wellman. Methods for empirical
game-theoretic analysis. In AAAI, volume 980, pages 1552–
1556, 2006.

[Wistuba and Grabocka, 2020] Martin Wistuba and Josif
Grabocka. Few-shot Bayesian optimization with deep ker-
nel surrogates. In ICLR, 2020.

[Yang et al., 2020] Yaodong Yang, Rasul Tutunov, Phu Sakul-
wongtana, and Haitham Bou Ammar. αα-Rank: Practically
scaling α-Rank through stochastic optimisation. In AAMAS,
pages 1575–1583, 2020.

[Zhao et al., 2023] Wayne Xin Zhao, Kun Zhou, Junyi Li,
Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey
of large language models. arXiv preprint arXiv:2303.18223,
2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

147

	Introduction
	Related Works
	Preliminaries
	Games
	Policy-Space Response Oracles

	Motivating Example
	Self-adaptive PSRO
	Parametric PSRO
	HPO Policy Optimization

	A Novel Offline HPO Algorithm
	HPO as Sequence Modeling
	Tokenization
	Training Dataset
	Loss Function and Inference

	Experiments
	Experimental Setup
	Results
	More Discussion

	Conclusions

