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Abstract
Securing networked infrastructures is important
in the real world. The problem of deploying
security resources to protect against an attacker
in networked domains can be modeled as Net-
work Security Games (NSGs). Unfortunately, ex-
isting approaches, including the deep learning-
based approaches, are inefficient to solve large-
scale extensive-form NSGs. In this paper, we pro-
pose a novel learning paradigm, NSG-NFSP, to
solve large-scale extensive-form NSGs based on
Neural Fictitious Self-Play (NFSP). Our main con-
tributions include: i) reforming the best response
(BR) policy network in NFSP to be a mapping from
action-state pair to action-value, to make the calcu-
lation of BR possible in NSGs; ii) converting the
average policy network of an NFSP agent into a
metric-based classifier, helping the agent to assign
distributions only on legal actions rather than all ac-
tions; iii) enabling NFSP with high-level actions,
which can benefit training efficiency and stability
in NSGs; and iv) leveraging information contained
in graphs of NSGs by learning efficient graph node
embeddings. Our algorithm significantly outper-
forms state-of-the-art algorithms in both scalability
and solution quality.

1 Introduction
How to secure networked infrastructures, e.g., urban city net-
works, transportation networks, and web networks, has re-
ceived extensive attention [Jain et al., 2011; Zhang et al.,
2017; Zhang et al., 2019; Okamoto et al., 2012]. The prob-
lem of deploying a limited number of security resources
(controlled by the defender) to protect against an attacker
in networked domains can be modeled as Network Secu-
rity Games (NSGs). We consider a realistic game setting
where the players interact sequentially (extensive-form) and
the defender makes decisions based on real-time informa-
tion about the attacker [Zhang et al., 2019]. The objective
of NSGs is to find a Nash Equilibrium (NE) policy for the
defender. Traditionally, the defender’s policy is computed by
programming-based NE-solving techniques, e.g., the incre-
mental strategy generation algorithms [Bosansky et al., 2014;

Zhang et al., 2019], which start from a restricted game and it-
eratively expand it until convergence. One important require-
ment of these approaches is that all of the attacking paths are
enumerable, which is to ensure that there is at least a terminal
state in the restricted game for each attacking path to make the
incremental strategy generation algorithm converge. How-
ever, in large-scale NSGs, e.g., real-world road networks,
where the number of attacking paths are prohibitively large,
programming-based NE-solving approaches tend to lose ef-
fectiveness. For example, in the real world, the number of
possible attacking paths could be more than 6.618 [Jain et al.,
2011], which will make it impossible to enumerate all of them
due to the limited memory.

Recently, there has been an increasing interest in combin-
ing Deep Learning (DL) with game theory for finding NE
[Heinrich and Silver, 2016; Lanctot et al., 2017; Brown et
al., 2019]. DL-based NE-solving algorithms use Deep Neu-
ral Networks (DNNs) to learn states-to-actions mappings for
approximating strategies, counterfactual regrets, etc. They
usually execute in a sampling style and are able to capture the
structure of underlying enormous state spaces by leveraging
strong representation ability of DNNs, making them potential
for solving large-scale and complex real-life problems.

Unfortunately, existing DL-based NE-solving algorithms
are unable to solve large NSGs. In NSGs, players occupy
nodes of graphs, e.g., road networks, and can only move to
their adjacency nodes (legal actions) at each step. A conse-
quence is that legal actions change with players’ current posi-
tions or states. To approximate states-to-actions mappings, a
naive implementation is to set the output dimension of DNNs
equal to the maximum number of legal actions, with each
output corresponding to one legal action though the action
changes with states. However, this naive setting yields poor
results in practice because each output of DNNs has no con-
sistent semantics [Farquhar et al., 2020]. On the other hand, it
is infeasible to set the output dimension of DNNs equal to the
number of all actions and use masks to filter out all illegal ac-
tions at each state. The reason is that, in NSGs, the defender’s
action space is prohibitively large because it is a combination
of all sub-action spaces of the defender’s security resources.
For example, when there are four security resources deployed
on a road network with one hundred nodes, the defender’s ac-
tion set has 1004 elements. Obviously, we cannot define the
output of DNNs at such a scale.
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In this paper, we propose a novel learning paradigm,
NSG-NFSP, for approximating an NE policy in large-scale
extensive-form NSGs. The method is based on Neural Fic-
titious Self-Play (NFSP), which intrinsically ensures its con-
vergence. Our main contributions are fourfold. Firstly, we
propose to train the best response (BR) policy network in
NFSP to be a mapping from action-state pair to action-value,
which avoids the aforementioned unachievable requirement
where the output of DNN must cover the overall action spaces
of NSGs. Secondly, we convert the average policy network
into a metric-based classifier, helping an NFSP agent to as-
sign distributions only on legal actions rather than all actions.
Thirdly, we propose a framework to enable NFSP with high-
level actions, which can enhance training efficiency and sta-
bility in NSGs. Finally, we propose to learn efficient graph
node embeddings by node2vec, to leverage information con-
tained in the graphs of NSGs. We conduct experiments in
NSGs played on synthetic networks and real-world road net-
works. Our algorithm significantly outperforms state-of-the-
art algorithms in both scalability and solution quality.

2 Preliminaries and Related Works
2.1 Network Security Games
Network Security Games (NSGs) are proposed to model the
problem of deploying a limited number of security resources
to protect against an adaptive attacker in networked domains
[Jain et al., 2011]. For example, the police department dis-
tributes collaborating police officers to prevent a criminal
from escaping or attacking in urban cities [Zhang et al., 2017;
Jain et al., 2011]. An NSG is played on a graph G = (V,E)
which consists of a set of edgesE and a set of nodes V . There
are two players, the defender and the attacker. The attacker,
starting from one of the source nodes vatt0 ∈ Vs ⊂ V , tries
to reach one of the target nodes χ ∈ Vt ⊂ V within a fixed
time horizon T 1. The defender controls m security resources
and dynamically allocates them to catch the attacker before
he reaches any of the targets. We assume that the defender
can observe the real-time location of the attacker, with the
help of advanced tracking technologies such as GPS, but the
attacker can only see the initial locations of the security re-
sources [Zhang et al., 2019]. We model NSGs as extensive-
form games, where players make decisions sequentially.

At time step t, the attacker’s state sattt is a sequence
of nodes he has visited, i.e., sattt = 〈vatt0 , vatt1 , . . . , vattt 〉.
Aatt = V is the set of attacker actions and Aatt(sattt ) =
{vattt+1|(vattt , vattt+1) ∈ E} is the set of legal attacker actions at
sattt . For the defender, its state sdeft consists of the attacker’s
action history (state) and its resources’ current locations, i.e.,
sdeft = 〈sattt , ldeft 〉 where ldeft = 〈v0

t , . . . , v
m−1
t 〉. ldeft is ad-

jacent to resource location 〈v0
t+1, . . . , v

m−1
t+1 〉 if (vRt , v

R
t+1) ∈

E, ∀R ∈ {0, . . . ,m − 1}. We denote Adj(ldeft ) as the set of
all resource locations which are adjacent to ldeft . With this
concept, we can define the set of legal defender actions at
sdeft as Adef (sdeft ) = Adj(ldeft ) and Adef = V m is the

1The target nodes represent destinations to be attacked or exits
to escape.
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Figure 1: The NFSP framework.

set of defender actions. For both the attacker and the de-
fender, illegal actions at state s are those actions in A but not
in A(s). A policy π(s) = ∆(A(s)) describes a player’s be-
havior, where ∆(·) represents a probability distribution. Both
players act simultaneously at each step by sampling actions
from their policies: a ∼ π(s). The attacker is caught if he
and at least one of the security resources are in the same
node at the same time. A game ends when the attacker ei-
ther reaches any of the targets within the maximum allowed
time or is caught. If the defender successfully protects the
targets within the time horzion T , she will be awarded with
a positive unit utility (an end-game reward) udef = 1. Oth-
erwise, no award will be given to the defender. The game is
zero-sum, so uatt = −udef . The worst-case defender util-
ity Edef (πdef ) is the expected payoff for the defender (with
policy πdef ) given that the attacker best responds to it. For-
mally, Edef (πdef ) = minπatt

E
[
udef |πdef , πatt

]
. π∗def is op-

timal if π∗def ∈ arg maxπdef
Edef (πdef ). The optimality for

the attacker is defined similarly. A Nash Equilibrium (NE) is
reached if and only if both the defender and the attacker per-
form the optimal policy. In NSGs, the optimization objective
is to learn an NE policy for the defender.

2.2 Neural Fictitious Self-Play
Fictitious play (FP) [Brown, 1951] is a game-theoretic algo-
rithm for learning NE from self-play. In FP, each agent plays
with its opponent’s past average policy and best responds
against it. Fictitious Self-Play (FSP) [Heinrich et al., 2015]
extends FP from normal form to extensive form and realizes it
in a sampling and machine learning style. Neural Fictitious
Self-Play (NFSP) [Heinrich and Silver, 2016] combines FSP
with neural network function approximation. As in Figure
1, each NFSP agent consists of two neural networks, i.e., the
best response (BR) policy network and the average policy net-
work. The BR policy network is trained by reinforcement
learning (RL) algorithms, e.g., DQN [Mnih et al., 2015], to
maximize the expected total rewards. It considers the oppo-
nent as part of the environment. The average policy network
is trained to approximate the past average behaviours of the
BR policy network by supervised learning (SL). It outputs the
probabilities of actions chosen, historically, by the BR policy
network. Each NFSP agent behaves according to a mixture
of its BR policy and average policy (with a mixing constant η
which is called anticipatory parameter).

Most applications of NFSP are limited in domains with
small discrete action spaces. Despite this, applying NFSP to
other types of action spaces has received extensive attention.
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Figure 2: The network structure of the defender (the two red boxes
indicate the convolutional blocks in GatedCNN).

OptGradFP [Kamra et al., 2018] firstly introduces fictitious
play to continuous action spaces. It applies policy gradient
algorithm over policy network which predicts parameters of
continuous action distributions. DeepFP [Kamra et al., 2019]
generalizes OptGradFP by using flexible implicit density ap-
proximators. Currently, applying NFSP to games like NSGs,
whose action spaces are large and legal actions vary signifi-
cantly with states, remains unexplored. The main challenge
is that the output of the two DNNs in NFSP cannot cover all
actions, and if just covering legal actions, they will lack con-
sistent semantics. With many recent works focusing on adapt-
ing deep RL to large discrete action spaces [He et al., 2016;
Chandak et al., 2019], we propose our solution for the BR
policy network based on DRRN [He et al., 2016]. It mod-
els Q-values as an inner product of state-action representation
pairs. DRRN is designed for natural languages domain. We
adapt it to make it suitable for NSGs whose actions are de-
fined on graph nodes. For the average policy network, our so-
lution is inspired by metric-based few-shot learning [Snell et
al., 2017]. We propose to address the problem by transform-
ing actions and states to a space where the probabilities of
actions can be determined via comparing some metrics, e.g.,
cosine similarity. Further discussions about related works are
provided in the appendix of the full version.

3 Methodology

In this section, we introduce a novel learning paradigm, NSG-
NFSP, for solving large-scale NSGs. Note that despite the
method being proposed for solving NSGs, the basic ideas can
be easily applied to other games, especially those whose legal
action spaces vary significantly with states. We provide the
overall algorithm in the appendix.

3.1 Approximating Best Response Policy
It is essential to properly approximate the BR policy in NFSP
because the final (average) policy is supervisedly trained from
the behavior of the BR policy network. The BR policy net-
work in the vanilla NFSP algorithm learns a mapping from
states to action-values, which internally requires the DNN’s
outputs to cover all possible actions. However, for games
like NSGs, it is impossible to meet this requirement because
the overall action space is enormous. To address the prob-
lem, we propose to convert the BR policy network to be a
mapping from state-action pairs to Q-values. Concretely, we
use an action representation network and a state representa-
tion network, parameterized by θQα and θQβ , to extract fea-
tures from each legal action and state respectively, generat-
ing feature vectors ha and hs. The extracted features ha and
hs are concatenated and sent to a fully connected network
f(ha, hs; θ

Q
γ ) with parameters θQγ to predict the action-value.

We denote θQ = {θQα , θ
Q
β , θ

Q
γ } as the parameters of the BR

policy network. During training, an agent stores its experi-
enced transition tuples, (s, a, r, s′,A(s′)), in a replay buffer
MRL, where r ∼ R(·|s, a) (reward function) is the imme-
diate reward and s′ ∼ P (·|s, a) (transition function) is the
next state. The BR network parameters θQ are optimized by
minimizing the loss:

L(θQ) = Es,a,r,s′
[
(r+ max

a′∈A(s′)
Q(s′, a′; θQ

′
)−Q(s, a; θQ))2

]
(1)

where θQ
′

denotes the parameters of the target network. θQ
′

is periodically copied from θQ, while in other cases it is
frozen to improve the stability of training.

Figure 2 presents the overall network architecture, NSG-
BR, for the defender. We can design the network for the
attacker similarly. Since the elements of states and actions
are graph nodes, we firstly embed those graph nodes before
they can be fed into neural networks. For the action repre-
sentation network, we use a learnable embedding layer. For
the state representation network, we pre-compute the embed-
dings (the approach is introduced in Section 3.4). After em-
bedding graph nodes, we need to extract features from the
attacker’s history. Taking into account the speed and effec-
tiveness, we apply a structure similar to GatedCNN [Dauphin
et al., 2017] to process these sequential data. Specifically, the
sequential data padded to the maximum length is fed into two
separate convolutional blocks which have identical structures.
The output of one block is activated by the sigmoid function
σ(x) = 1

1+e−x , and the result serves as the gate to control the
output of the other convolutional block. After extracting fea-
tures for a state, the state feature vector is duplicated (broad-
cast) |A(s)| times (number of legal actions at the state) and
concatenated with legal action features. Then the state-action
pairs’ features are passed to several fully connected layers to
predict the final state-action values.

3.2 Approximating Average Policy
The average policy network in the vanilla NFSP algorithm
is a classifier-like network whose output scales linearly with
the cardinality of action set A. In NSGs, assigning distribu-
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Figure 3: The architecture of NFSP with high-level actions.

tions over legal action set A(s), rather than the whole ac-
tion set, is preferred. We propose to convert the average
policy network into a metric-based classifier, transforming
states and legal actions to a space where they can be com-
pared by some metrics. We use fully-connected layers to
learn the metric. The reason is that i) learnable metric is more
representative compared to heuristic metric; and ii) we can
reuse the network architecture as depicted in Figure 2. Sim-
ilar to NSG-BR, the average policy network, NSG-AVG, has
three parts, i.e., the action representation network, the state
representation network and the metric network. We denote
θΠ = {θΠ

α , θ
Π
β , θ

Π
γ } to be parameters of NSG-AVG, where

θΠ
α , θ

Π
β , θ

Π
γ are the parameters of its three sub-networks re-

spectively. NSG-AVG works similarly to NSG-BR, the main
difference being that NSG-AVG assigns probabilities to le-
gal actions rather than Q-values. Let Π(A(s)|s) be the out-
put of NSG-AVG and Π̂(A(s)|s) be the ground truth aver-
age BR behaviours. We measure the difference between these
two distributions, Π(A(s)|s) and Π̂(A(s)|s), by the expected
Kullback-Leibler (KL) divergence. Then the parameters θΠ

of NSG-AVG can be optimized by minimizing the difference:

L(θΠ) = −Es
[ ∑
a∈A(s)

Π̂(a|s) log
(Π(a|s)

Π̂(a|s)

)]
= −Es,a

[
log
(Π(a|s)

Π̂(a|s)

)] (2)

The denominator in Eq.(2) can be omitted since it does not
depend on θΠ. Then the optimization objective becomes min-
imizing the loss function:

L(θΠ) = −Es,a
[

log
(

Π(a|s)
)]

(3)

An agent records its BR behaviours, i.e., (s, a), in a reservoir
buffer MSL which serves as an expanding dataset. It fits
the dataset by applying gradient descent. According to the
theoretical convergence of NFSP [Heinrich and Silver, 2016],
the average policy network approximates an NE policy.

3.3 Enabling NFSP with High-Level Actions
During training, it usually takes many episodes for the BR
policy network to approximate the BR policy. For example,
in NSGs, the NFSP attacker will do a lot of unnecessary ex-
plorations in invalid paths, i.e., the paths which cannot reach
any of the targets, before finding the optimal path. This will
lead to training inefficiency and instability because i) other
agents will play against this weak opponent for a long period;
and ii) behaviours of non-BR policy will be used for train-
ing the average policy network. The problems can be miti-
gated if an NFSP agent makes decisions on high-level actions

(HLA). For instance, we can force the NFSP attacker in NSGs
to make decisions on valid paths or source-target pairs (high-
level actions) rather than the next-step location. The idea of
HLA is similar to action abstractions [Marino et al., 2019;
Lelis, 2020] and options in hierarchical RL [Kulkarni et al.,
2016].

To extend the NFSP framework so that an agent can de-
cide on High-Level Actions (NFSP-HLA), we propose to use
Multi-Armed Bandit (MAB), a widely used approach to opti-
mize decisions between multiple options (actions), to model
the BR policy for an NFSP-HLA agent. Each option of the
MAB corresponds to a high-level action. We use a first-in-
first-out (FIFO) buffer with length k to record the most recent
k game results (utilities). The estimated action value for a
high-level action ζ after n episodes becomes:

Q̂n(ζ) =

∑n
j=τ ujI[ζj = ζ]∑n
j=τ I[ζj = ζ]

(4)

where τ = max(n − k, 1), uj is the player’s utility for the
j-th episode, and I is binary indicator function. We design
two auxiliary modules to fit the MAB best responsor into the
framework of NFSP: i) the Averager (AVGer) module, which
is used to measure the average policy, by counting the fre-
quency of each high-level action; and ii) the Cache module,
which is to temporarily store behaviours of the MAB. Data
stored in the Cache is used to update the AVGer.
Learning Process. As in Figure 3, before each episode, an
NFSP-HLA agent samples its behaviour pattern, acting as ei-
ther the MAB (with probability η) or the AVGer (with prob-
ability 1 − η). If acting as the MAB, the agent chooses the
high-level action with the largest estimated value and stores
the high-level action in the Cache. Otherwise, the agent sam-
ples an high-level action according to the distribution in the
AVGer. After confirming the high-level action, the agent in-
teracts with the environment (containing the opponents) and
receives an utility at the end of a game. Then the utility is
used for training the MAB in accordance with Eq. (4). The
Cache pours its records into the AVGer in a fixed frequency,
after which it clears itself. By using the Cache, we can avoid
rapid changes in the AVGer, thus reducing instability.
Additional Exploration. An NFSP-HLA agent does ex-
ploration by acting as the AVGer (not the MAB). Such mech-
anism may lead to suboptimality when some actions are dom-
inated. For example, if the AVGer explores some good ac-
tions, the MAB is likely to choose them because of their high
estimated values. Behaviours of the MAB will be recorded
by the AVGer, further increasing these actions’ occurrence
frequency (selected by the AVGer). This may result in some
actions appearing rarely, and the MAB cannot precisely esti-
mate those actions’ values. To overcome this, we design addi-
tional exploration for NFSP-HLA agent: if the agent does not
act as the MAB, it will perform additional sampling to decide
whether to explore or not. If the sampling result indicates ex-
ploration, the agent will act randomly and the transitions for
this episode will not be recorded by the opponent; Otherwise,
the agents will interact normally. Additional exploration con-
firms that each high-level action occurs enough times that the
MAB can conduct action-value estimation.
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Figure 4: Singapore map and the extracted road network.

3.4 Efficient Graph Node Embeddings
To leverage information, e.g., adjacency and connectivity,
contained in graphs of NSGs, we propose to use node2vec
[Grover and Leskovec, 2016], a semi-supervised learning
algorithm, to learn representations for nodes. Concretely,
we learn a mapping function to transform nodes to low-
dimensional space of features which maximizes the likeli-
hood of preserving graph structures. Let g : V → RD be
the mapping function, we need to optimize:

max
g

∑
v∈V

log Prob(NO(v)|g(v)) (5)

where NO(·) is a randomized procedure that samples many
different neighborhoods of a given node. Concretely, the pro-
cedure NO(·) is parameterized by a sampling strategy O:

O(vt = x|vt−1 = u) =

{
U(u,x)
Z if (u, x) ∈ E

0 else
(6)

where U(·, ·) is the unnormalized transition probability, and
Z is the normalizing constant. The sampling strategyO could
be, for example, Breadth-First Sampling (BFS), Depth-First
Sampling (DFS), etc., generating different transition proba-
bilities. We follow node2vec to use a biased 2nd order ran-
dom walk as the sampling strategy. In our unweighted road
network graph,

U(u, x) = αpq(u, x) =


1
p if dwx = 0

1 if dwx = 1
1
q if dwx = 2

(7)

where p, q are two parameters of the random walk which con-
trol how fast the walk explores, w is the predecessor of u, and
dwx is the distance between nodes w and x.

After obtaining the mapping function g, we use it to embed
nodes when extracting features from a state. For action rep-
resentation, we use a learnable embedding layer. We apply
this setting because it can keep flexibility in learning while
leveraging graph information.

3.5 Discussion about Other Applicable Games
The proposed method is suitable for solving games whose
legal actions vary significantly with states. Since the legal
actions at different states can be very different, the overall ac-
tion spaces of these games are usually enormous, leading to
inefficiency of existing approaches. Our method is a mitiga-
tion for the problem. Apart from NSGs, our method can be
applied to games that involve high-dimensional control. In
such games, the overall legal action space is a combination

of each dimension’s legal action space, changes of legal ac-
tions in each dimension will accumulate and may lead to a
significant change in the overall legal action space. Team-
Goofspiel (Section 4.3) is an example for that. Another po-
tential application scenario of our method is text-based games
whose actions are defined based on natural languages, i.e.,
the action spaces are composed of sequences of words from
a fixed size and large dictionary. There are constraints on
actions at each state to generate a meaningful command (se-
quence of words), e.g., “open door”, “turn left”. For differ-
ent states, e.g., ”open” or ”turn”, the corresponding legal ac-
tion spaces are very different (“door, box, book, . . . ” or “left,
right, . . . ”). Our method can be applied to them by firstly
learning states and legal action representations and then map-
ping state-action pair representations to values which repre-
sent Q-values or probabilities. High-level actions can be de-
fined, for example, as phrases or sentences, and learning em-
beddings for each word is also reasonable.

4 Experimental Evaluation
We firstly evaluate our algorithm on large-scale NSGs. Then,
we perform ablation studies to understand how each compo-
nent of NSG-NFSP affects the results. Finally, we justify the
adaptability of our method to games in other domains. Ex-
periments are performed on a server with a 10-core 3.3GHz
Intel i9-9820X CPU and an NVIDIA RTX 2080 Ti GPU.

4.1 Large-Scale NSGs
We evaluate our algorithm in NSGs played on both artificially
generated networks and real-world road networks.

Artificially Generated Networks. We generate the evalu-
ation network by the grid model with random edges [Peng et
al., 2013]. Concretely, we sample a 15× 15 grid whose hori-
zontal/vertical edges appear with probability 0.4 and diagonal
edges appear with probability 0.1. We set the initial location
of the attacker at the center of the grid, and let the defender
controls 4 security resources which are distributed uniformly
on the network at the beginning2. There are 10 target nodes
located randomly at the border. We set the time horizon T as
70, 90, and 300, to create NSGs with different scales.

We compare our algorithm with two heuristic defender
policies, namely uniform policy and greedy policy, as well
as a state-of-the-art algorithm, IGRS++ [Zhang et al., 2019].
For the uniform policy, the defender assigns equal probabil-
ity to each legal action at a state. For the greedy policy, all
of the defender’s security resources always move along the
shortest path to the attacker’s current location. When evalu-
ating the performance, because the game sizes are very large,
it is intractable to calculate exact worst-case defender util-
ity. We overcome this by using approximate worst-case de-
fender utility. Specifically, we use a DQN attacker to best
respond to the defender and calculate defender utility under
this scenario to approximate the worst-case defender utility.
We train the DQN attacker for 2 × 105 episodes, store the
best model, and load the best model to play with the defender

2NSG-NFSP allows the players to do stochastic initialization, by
taking the initialization as the first-step action.
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NSG-NFSP Uniform policy Greedy Policy IGRS++
T=70 0.1770 ± 0.0168 0.0730 ± 0.0114 0 ± 0 OOM
T=90 0.1205 ± 0.0143 0.0715 ± 0.0111 0 ± 0 OOM
T=300 0.0825 ± 0.0120 0.0675 ± 0.0110 0 ± 0 OOM

(a) Synthetic network

NSG-NFSP Uniform Policy Greedy Policy IGRS++
T=30 0.1225 ± 0.0140 0.0230 ± 0.0066 0 ± 0 OOM
T=300 0.0720 ± 0.0113 0.0055 ± 0.0032 0 ± 0 OOM

(b) Real-world road network

Table 1: Approximate worst-case defender utilities in NSGs with
different time horizons. The “±” indicates 95% confidence intervals
over the 2000 testing episodes. OOM stands for Out of Memory.

for another 2000 episodes to obtain the final results. We run
the NSG-NFSP for 5× 106 episodes, which takes around 3-4
days. Despite that the method consumes non-trivial resources
when training, it can realize real-time inference, making its
deployment possible. Neural network structures and hyper-
parameters are included in the appendix. As in Table 1a, our
method, NSG-NFSP, outperforms the baselines in all three
large-scale NSGs. The state-of-the-art algorithm, IGRS++,
cannot execute. The reason is that, as an incremental strategy
generation algorithm, IGRS++ requires the attacking paths to
be enumerable. However, for all of the three settings, it is im-
possible to enumerate attacking paths. We try to enumerate
attacking paths for the case T = 70 on a machine with 32G
RAM, but after all the memory is occupied, the enumeration
does not end. Applying counterfactual regret minimization
(CFR) [Zinkevich et al., 2008] or its variants [Schmid et al.,
2019; Brown et al., 2019] to solve large-scale NSGs is also
infeasible, and we discuss about it in the appendix. Note that
the approximate worst-case defender utilities for the greedy
policy are always 0, which means that the DQN attacker can
always find at least one path to a target node such that the
defender with greedy policy cannot prevent him.

Real-World Road Networks. As in Figure 4, we extract
highways, primary roads and the corresponding intersections
from Singapore map via OSMnx [Boeing, 2017]. There are
372 nodes and 1470 edges. Edges are colored according to
closeness centrality. The brighter the color, the closer the
edges are to the center. The initial position of the attacker,
marked in the dark point, locates near the center. There are 4
security resources, marked in blue points. Those target nodes,
denoting exits of the map, are marked in red points. We test
out that T = 30 will lead to attacking/escaping paths unenu-
merable, and we set the time horizon at 30 and 300. The
NFSP defender is trained for 5 × 106 episodes which takes
around a week to finish. We keep the evaluation settings the
same as in synthetic networks for T = 30 because we find
the settings work well. For T = 300, where training a DQN
attacker is more difficult, we fine-tune hyperparameters to en-
hance the DQN attacker’s performance. As presented in Ta-
ble 1b, our method significantly outperforms the baselines in
both settings. Additional experiments on the Manhattan map
also show that our method outperforms the baselines. More
experiment results are in the appendix.
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Figure 5: The learning curves of the defender against an attacker
with uniform policy on synthetic networks, averaged across 5 runs.
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Figure 6: Performance of sequence encoders on the 7× 7 grid.

4.2 Ablation Studies
We perform ablation studies on 7× 7 and 15× 15 randomly
generated grids, with T at 7 and 15, respectively.

Best Response Approximation. We try to evaluate
whether the proposed network architecture, NSG-BR, is able
to enhance best response approximation. We set the policy of
the attacker to be uniform, and let the defender best respond
to him. We compare NSG-BR with a naive implementation,
max-action DQN, which fixes the output dimension of BR
policy network equal to the maximum number of legal ac-
tions. As in Figure 5, the performance of max-action DQN
is significantly worse than NSG-BR in both settings. We fur-
ther explore the effect of pre-defined graph node embedding
(GNE). We replace GNE with a learnable embedding layer
(w/o GNE). Results show that, in simple graph (the 7 × 7
grid), the learning curves have no obvious difference. How-
ever, in complex graph (the 15 × 15 grid), GNE does benefit
the training. If created properly, GNE can not only speed up
the training but also make the process more stable.

Comparisons of Different Sequence Encoders. We com-
pare the performance of different types of sequence encoders
for extracting state features. The encoders include: i) Gated-
CNN (CNN), a CNN-based approach (what we use in NSG-
NFSP); ii) Gated Recurrent Unit (GRU) [Chung et al., 2014];
iii) Graph Convolution Network (GCN) [Kipf and Welling,
2017]; iv) Graph Attention Network (GAT) [Veličković et
al., 2018]; and v) Multi-Layer Perceptron (MLP). We eval-
uate the average defender utility on the synthetic 7 × 7 grid,
setting the policy of the attacker to be uniform. The learning
curves of the defender are presented in Figure 6a. We can
find that GatedCNN obtains superior performance over other
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Figure 7: Ablation studies regarding each component of NSG-NFSP.

sequence encoders. We further test the running speed by mea-
suring number of iterations per second (IPS) for both the for-
ward process and the optimization process (batchsize=256).
The forward process affects the speed to collect experiences,
and the optimization process affects the speed to optimize pa-
rameters of DNNs. As in Figure 6b, GatedCNN is the fastest
of all the sequence encoders.
Worst-Case Defender Utility. To show how each com-
ponent of NSG-NFSP affects the performance, we replace
i) best response policy approximation module (Section 3.1)
with max-action DQN (w/o BR); ii) average policy approx-
imation module (Section 3.2) with max-action network (w/o
AVG); iii) the attacker in high-level control (Section 3.3) with
the original low-level implementation (w/o A-HLA); and iv)
graph node embeddings (Section 3.4) with a learnable embed-
ding layer (w/o GNE). As in Figure 7, replacing any of BR,
AVG and A-HLA will cause a dramatic drop in performance.
As for GNE, it shows a slight performance improvement in
simple networks (the 7×7 grid), but in complex networks (the
15 × 15 grids), the enhancement is significant. NSG-NFSP
achieves a performance of around 0.8 for the both games.
Since the worst-case defender utility is upper-bounded by 1
(the defender wins the game definitely), the results demon-
strate near-optimal solution quality of our method.

4.3 Adaptability
Our method is suitable for games whose legal action spaces
or their sizes vary significantly with states, including but not
limited to NSGs. To justify this, we conduct experiments
on an extended version of Goofspiel [Ross, 1971], a popular
poker game. Specifically, we modify Goofspiel to be played
between a team with several members and a single player, as
opposed to two single players. We name the modified game as
Team-Goofspiel. In k-rank n-member Team-Goofspiel, there
are k rounds and the team consists of n members. At each
round t (t = 1, . . . , k), n team members and the single player
place bids for a prize of value t. The possible bids are 1, . . . , k
and each bid can be placed exactly once (the action space of
the team player decays rapidly with respect to t, containing
(k + 1 − t)n legal actions in total). The player with higher
bid wins the prize of the current round; if the bids are equal,
no player wins the prize. Both players can only observe the
outcome of each round but not the bids. The single player
will win the game if its total prize is greater than the team’s
prize at the end of the game, otherwise the team wins. The
winner will obtain a utility of 1. We design two game modes
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Figure 8: The worst-case team utility in 4-rank 2-member Team-
Goofspiel under MAX and AVERAGE game modes.

for Team-Goofspiel, namely the MAX mode and the AVER-
AGE mode, where the bid of the team is determined by taking
the maximum or the average of all team members’ bids, re-
spectively. We set k = 4 and n = 2 in the experiments. As in
Figure 8, our method obtains superior performance compared
to the vanilla NFSP algorithm in both the MAX mode and the
AVERAGE mode, demonstrating its good adaptability3.

5 Conclusions
In this paper, we propose a novel learning paradigm, NSG-
NFSP, for finding NE in large-scale extensive-form NSGs.
The algorithm trains DNNs to map state-action pairs to val-
ues, which may represent Q-values or probabilities. It en-
hances the performance by enabling the NFSP attacker with
high-level actions and learning efficient graph node embed-
dings. Our method significantly outperforms state-of-the-art
algorithms in both scalability and solution quality.
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