
Grasper: A Generalist Pursuer for Pursuit-Evasion Problems
(Appendix)

Anonymous Author(s)
ACM Reference Format:
Anonymous Author(s). 2024. Grasper: A Generalist Pursuer for Pursuit-
Evasion Problems (Appendix). In Proc. of the 23rd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland,
New Zealand, May 6 – 10, 2024, IFAAMAS, 8 pages.

A MORE DISCUSSION
In this section, we provide more discussion and explanations to
further facilitate the understanding of the contributions of this
work by answering several questions.
Q1. Significance of PEGs.

(i) As a classical type of game, PEGs have a long history in the
field of game theory and provide a general framework that mathe-
matically formalizes many important real-world scenarios such as
surveillance, navigation, analysis of biological behaviors, and con-
flict and combat operations [4, 10, 12, 18, 19, 24, 25]. Although there
exist different terminologies in different research such as Princess
vs.Monster [13], Hunter vs. Rabbit [1], Cops vs. Robbers [3], Preda-
tor vs. Prey [6, 23], and Defender vs. Attacker [14, 20], they share a
similar game model which sets up two players or two teams of play-
ers against each other. Moreover, numerous works have been done
on solving PEGs under various assumptions, e.g., mobile players,
intelligent adversaries, and multiple pursuers and evaders.

(ii) In particular, PEGs on graphs have been used to model the
interactions between the pursuer and evader in graph-based envi-
ronments [5, 7, 14, 16, 17, 26, 27, 29, 30]. As the hardness of solving
PEGs on graphs is closely related to the size of the underlying
graph, it is important and necessary to develop scalable approaches
to solve large-scale PEGs with city-scale road networks.
Q2. The necessity of a new approach when considering solv-
ing different PEGs with varying initial conditions.

(i) As mentioned in the main text, given a PEG on a grid mapwith
size 10 × 10, existing algorithms typically need one to two hours
to compute the NE strategy, and the running time increases with
the size of the map. Once the initial conditions of the PEG change,
we need to re-run the algorithms to compute the NE strategy from
scratch, which would be a significant computational challenge.

(ii) In real-world scenarios, the initial conditions of PEGs are
not always fixed: a crime can occur at any location of a city at any
time, exits can change due to temporary closures and openings,
and when the pursuers will catch the evader is not always the
same under different situations. Thus, the number of PEGs on a
given graph can be enormous. For example, the Singapore map
consists of 372 nodes. Suppose there are 5 pursuers and 8 exits,
and the time horizon is 6 ≤ 𝑇 ≤ 10. Then, the number of PEGs
is 5 × 372 × 𝐶371

5 × 𝐶371
8 ≈ 8.72 × 1029. The number of PEGs is
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still extremely large even after removing some trivial cases such
as some nodes are not the candidate exits in real-world scenarios.
Therefore, it is unbearable to solve each possible PEG from scratch
with existing algorithms (including classical heuristic methods such
as Dijkstra, linear program, CFR, and PSRO).

(iii) The problem of solving different PEGs with varying initial
conditions involves the generalizability of an algorithm over dif-
ferent PEGs, which has not been addressed in previous works. In
view of this fact and the infeasibility of existing algorithms, there
is an urgent necessity to propose a new approach to solve different
PEGs with varying initial conditions efficiently.
Q3. More explanations on the game model.

We provide more explanations on the reasonability of the game
model in characterizing real-world scenarios.

(i) The pursuers can have the real-time location information of
the evader with the help of tracking devices such as GPS-based
systems [8] and cameras [21] extensively deployed in the city. For
example, the StarChase [8] can provide police officers with real-time
(every 3 to 5 seconds) GPS locations of the fleeing vehicle. Therefore,
the assumption of the availability of the real-time location of the
evader is reasonable and widely adopted in previous works [16, 30].

(ii) In a pursuer’s observation, the location information only
contains the current locations of the players not the historical
locations of the players. Such a setting reduces the size of the
observation representation and still carries the entire information
as the locations of all players in the next time step depend only on
their current locations and their actions (as in [16]).

(iii) A pursuer member can have the location information of the
other members (full information), i.e., the observation of a pursuer
member consists of the locations of all other pursuer members.
This condition does not limit the applicability of the game model
because, in real-world scenarios, the pursuer members can easily
get the locations of each other through communication (e.g., the
walkie-talkies or security command center).
Q4. Did the key ideas have been developed by previous works
and the only improvement is attributed to the "generalist"
training such that this work seems incremental?

The answer is negative. To our knowledge, this is the first attempt
to consider the generalization problem in the domain of PEGs.
Previous works are typically tailored to a specific PEG with the
given initial conditions and are required to compute the NE strategy
from scratch when the conditions change, as mentioned in Section
3.3. Our work is closely related to [16], but the core components
proposed in Section 4 are entirely novel, as shown in Figure 1 in
the main text. To be clearer, we provide more explanations from
two aspects: architecture and training pipeline.
Architecture:

(i) Although the method developed in [16] is the SOTA method
for solving a specific PEG, it requires re-training the node embedding
model and the base policy from scratch once the initial conditions



of the PEG change, which possesses a significant time and com-
putational challenge to solve different PEGs with varying initial
conditions. With our proposed components, we can easily construct
a SOTA baseline, MT-PSRO, with minimal and most straightforward
modifications to the method in [16].

(ii) To efficiently solve different PEGs, the key is to efficiently
leverage the information about the initial conditions, which has
not been explored in previous works (note that MT-PSRO does not
explicitly take this information into account). To this end, we need
to address several closely coupled questions. First, what is the most
appropriate approach to represent the initial conditions of PEGs?
As the PEG is played on a graph, we propose a graphical representa-
tion that is universal for any PEG with any initial condition. Then,
naturally, we propose to leverage a GNN to encode these graphs
corresponding to different PEGs into low-dimensional hidden vec-
tors. After that, the next question is how to effectively integrate
these hidden vectors into policy learning. The most straightforward
idea is to directly concatenate these hidden vectors with the output
of the observation representation layer to obtain the (augmented)
inputs of the policy network, i.e., the baseline MT-PSRO-Aug. How-
ever, from our experiments, we can see that such a naive manner is
inefficient. To more effectively leverage the initial conditions, we
propose (SOTA) Grasper which generates the base policy network
conditional on the initial conditions by using a hypernetwork.

In summary, instead of a straightforward extension to previous
works, we address several critical challenges, leading to the SOTA
Grasper (MT-PSRO→MT-PSRO-Aug→ Grasper).
Training Pipeline:

(i) There are several components in our architecture: GNN, obser-
vation representation layer, and hypernetwork. The most straight-
forward manner is to train all these parts together in an end-to-end
way. However, as shown in Figure 5 and Table 2 in the main text,
this is inefficient. In fact, GNN is only used to extract the features
of the initial conditions of PEGs. Therefore, we propose to pre-train
the GNN (pre-pretraining stage) before pre-training other parts,
which is more efficient than jointly training all the components.

(ii) For the pre-training stage, though the basic principle is similar
with [16], there are two main differences. First, the task spaces are
different. In our pre-training (Algorithm 2 in themain text), the num-
ber of tasks is 𝑐1𝑐2 while it is 𝑐2 in [16]. Second, in our pre-training,
we use heuristic-guided multi-task pre-training (HMP) which is a
novel pre-training scheme proposed in our work, while [16] uses the
traditional multi-task pre-training. Thus, the training data (the ref-
erence policy 𝜋𝑝 is used in our HMP) and the optimization loss are
different. To be clearer, we present the pre-training process of [16]
in Algorithm 4, and the differences between our pre-training and
Algorithm 4 are highlighted in blue in Algorithm 2.

(iii) For the fine-tuning stage, the main difference between our
work and [16] lies in that we can quickly obtain the base pursuer’s
policy 𝜋𝑝0 through the hypernetwork for any given PEG. However,
in [16], one must first perform Algorithm 4 to get the base policy
𝜋
𝑝

0 when solving a new PEG (i.e., learning from scratch). For com-
parison, we present the fine-tuning process of [16] in Algorithm 5.

In summary, there are three most critical aspects of the training
pipeline: the introduction of the pre-pretraining stage which signif-
icantly improves the training efficiency, the HMP which effectively

addresses the exploration inefficiency, and the game-conditional
base policies generation in the fine-tuning stage.

Algorithm 4: Pre-training in [16]
1 Given G, initialize pursuer’s policy 𝜋𝑝𝜽 and buffer D ← ∅;
2 for train epoch = 1, 2, · · · do
3 Randomly generate 𝑐2 evader’s policies;
4 for each of the 𝑐2 evader’s policies 𝜋𝑒 do
5 Sample data using 𝜋𝑒 and 𝜋𝑝𝜽 ;
6 Add the data into the episode buffer D;
7 end
8 Train the networks by optimizing loss 𝐿(𝜽 );
9 Clear the episode buffer D ← ∅;

10 end

Algorithm 5: Fine-tuning in [16]
1 Require: Pre-trained 𝜋𝑝0 for a given PEG G;
2 Π

𝑝

0 = {𝜋𝑝0 }, Π
𝑒
0 = {𝜋𝑒0 },𝑈0, 𝜎

𝑝

0 , 𝜎
𝑒
0 ;

3 for epoch k = 1, 2, · · ·𝐾 do
4 Compute the evader’s BR policy 𝜋𝑒

𝑘
against 𝜎𝑝

𝑘−1;
5 Initialize the pursuer’s BR policy 𝜋𝑝

𝑘
← 𝜋

𝑝

0 ;
6 Train 𝜋𝑝

𝑘
against 𝜎𝑒

𝑘−1 for few episodes;
7 Expansion: Π𝑝

𝑘
= Π

𝑝

𝑘−1 ∪ {𝜋
𝑝

𝑘
}, Π𝑒

𝑘
= Π𝑒

𝑘−1 ∪ {𝜋
𝑒
𝑘
};

8 Update meta-game matrix𝑈𝑘 through simulation;
9 Compute 𝜎𝑝

𝑘
and 𝜎𝑒

𝑘
using a meta-solver on𝑈𝑘 ;

10 end
11 Return: Π𝑝

𝐾
, Π𝑒

𝐾
, 𝜎𝑝
𝐾
, 𝜎𝑒
𝐾

Q5. Why do initial conditions include the initial locations?
As the pursuer’s observations include the locations of the pur-

suers and evader, one may come to the conclusion that the initial
locations of the pursuers and the evader are not really distinguish-
ers in describing different PEGs. More intuitively speaking, one
may expect that the pursuer’s policy would learn distinguishable
representations so that it can perform well in PEGs with different
initial locations of the players if it is trained by using the data sam-
pled from different PEGs with different initial locations of the players.
However, we note that this is exactly the training procedure of
the MT-PSRO which, from our experiments, performs unsatisfying
without explicitly taking these initial locations into account.
Q6. More explanations on the evader’s policy.

(i) Note that the evader’s policy is a stochastic policy (not a pure
policy) which is defined as 𝜋𝑒 : 𝑉 → Δ(𝑉 ′) where Δ(𝑉 ′) is the
probability distribution over all the exit nodes.

(ii) This simplification of the evader’s policy definition is called
High-Level Actions in previous works, which is a necessity in the
PSRO algorithm/fine-tuning procedure (Algorithms 1, 3, and 5)
in this work as we only need to estimate the values of the exit
nodes through simulations when computing the evader’s BR policy.
Otherwise, the problem will be more intricate, and more advanced
techniques are required, if the evader is also learning-based.



B IMPLEMENTATION DETAILS
In this section, we present details on the environment, hyperpa-
rameters, network structure, loss function, and baselines.

B.1 Environment
The environment is implemented following the description of the
game model in Section 3. The underlying graphs are shown in
Figure 7. The scale-free map is generated using Barabási-Albert
preferential attachment [2], which can be easily obtained by lever-
aging the package “NetworkX” [9]. The Singapore map is from [27].
The Scotland-Yard map is from the board game “Scotland-Yard”1.

B.2 Hyperparameters
All experiments are performed on a machine with a 24-core Intel(R)
Core(TM) i9-12900K andNVIDIA RTXA4000. The hyperparameters
related to pre-pretraining, pre-training, and fine-tuning are listed
in Table 3. Note that the HMP coefficient 𝛼 is linearly decayed
for 40000 episodes. The hyperparameters related to the network
structure are given in the next subsection. We also refer readers
to [28] for more details since we use MAPPO as the underlying RL
algorithm of both pre-training and fine-tuning processes2.

B.3 Network Structure
Graph Neural Network (GNN).We use the well-known Graph
Convolutional Network (GCN) as the encoder to encode the graph-
ical representation of a PEG into the hidden vector. The implemen-
tation follows GraphMAE3 [11]. For the specific architecture of the
GCN, the number of GCN layers is 2, the hidden size is 128, the
output size of each node embedding is 32, the dropout rate is 0.5,
and the batch size for training the GCN is 32.
Hypernetwork and Policy Network. The policy network con-
tains three fully-connected (FC) layers denoted as 𝜽 = (𝜽1, 𝜽2, 𝜽3),
each with 128 neurons. The hypernetwork consists of two FC layers
each with 128 neurons, followed by three heads each including two
FC layers to respectively generate the weights and biases of the
corresponding layer of the policy network. That is, the first head
generates 𝜽1 = (𝒘1, 𝒃1) and similarly for the second and third heads.
The structure of the hypernetwork and policy network is shown
in Figure 8. The illustration is inspired by [15]. Different from [15],
we choose not to generate the parameter “gain” for implementation
convenience as “torch.nn.Linear” only contains weights and biases,
which can be easily initialized by copying the generated 𝜽 .
Observation Representation Layer. An observation of a pur-
suer member consists of three parts: the locations of players, the
pursuer member’s id, and the current time step. We use three com-
ponents to encode each part of the observation. Each component
is a “torch.nn.Embedding” which is extensively used to encode an
integer to a compact representation. The sizes of the dictionary
for the three components are respectively the number of nodes
of graph |𝑉 |, the number of pursuers 𝑛, and the maximum time
horizon 𝑇 . In our experiments, we have |𝑉 | = 100 for the grid map,
|𝑉 | = 372 for the Singapore map, |𝑉 | = 300 for the scale-free map,
|𝑉 | = 200 for the Scotland-Yard map, 𝑛 = 5, and 𝑇 = 10. The output
1https://boardgamegeek.com/boardgame/438/scotland-yard
2https://github.com/zoeyuchao/mappo.git
3https://github.com/THUDM/GraphMAE

Table 3: Hyperparameters

Name Value
Pre-pretraining

learning rate 1.5𝑒−4

weight decay 1𝑒−5

training epoch 2000
Pre-training

learning rate of actor 3𝑒−4

learning rate of critic 5𝑒−4

MAPPO probability ratio clipping 0.2
MAPPO entropy coefficient 𝜂 0.01
MAPPO update epoch 15
discount factor 𝛾 0.99
batch size 256
HMP coefficient 𝛼 0.1→ 0.01
number of games 𝑐1 5
number of evader strategies 𝑐2 5
number of episodes for an RL task 10

Fine-tuning

learning rate of actor 1𝑒−4

learning rate of critic 5𝑒−4

MAPPO probability ratio clipping 0.2
MAPPO entropy coefficient 𝜂 0.01
MAPPO update epoch 10
discount factor 𝛾 0.99
batch size 32
evader’s BR training episode 200
meta-game simulating episode 200

dimension of each component is 16. The outputs of the three compo-
nents are concatenated to obtain the representation of the pursuer’s
observation, as shown in Figure 9. Therefore, the total dimension
of the pursuer’s observation representation is (𝑛 + 3) × 16.

B.4 Loss Function
Let 𝜋𝑝𝜽 and𝑉 𝑝𝝓 respectively denote the actor and critic in theMAPPO
algorithm. Then, the loss function for HMP is:

𝐿𝑡 (𝜷A, 𝜷C)

= E
[
𝐿1
𝑡 (𝜽 = 𝑓𝜷A (𝒉G,𝑇 )) − 𝐿2

𝑡 (𝝓 = 𝑓𝜷C (𝒉G,𝑇 ))

+ 𝜂H(𝜋𝑝
𝜽=𝑓𝜷A (𝒉G ,𝑇 )

) + 𝛼KL(𝜋𝑝
𝜽=𝑓𝜷A (𝒉G ,𝑇 )

∥𝜋𝑝 )
]
,

(1)

where 𝑓𝜷A and 𝑓𝜷C are respectively the hypernetworks for gener-
ating the actor and critic networks and parameterized by 𝜷A and
𝜷C (similarly, 𝜷A,old and 𝜷C,old respectively denote the old version
of the hypernetworks which are periodically updated by copying
from 𝜷A and 𝜷C). For notation simplicity, we use 𝜽G,𝑇 and 𝝓G,𝑇 to
represent 𝜽 = 𝑓𝜷A (𝒉G,𝑇 ) and 𝝓 = 𝑓𝜷C (𝒉G,𝑇 ), respectively (simi-
larly, we use 𝜽oldG,𝑇 and 𝝓oldG,𝑇 to represent 𝜽old = 𝑓𝜷A,old (𝒉G,𝑇 ) and
𝝓old = 𝑓𝜷C,old (𝒉G,𝑇 ), respectively). Then, the first three terms in

https://boardgamegeek.com/boardgame/438/scotland-yard
https://github.com/zoeyuchao/mappo.git
https://github.com/THUDM/GraphMAE


(a) Scale-Free Map (b) Singapore Map (c) Scotland-Yard Map

Figure 7: The underlying graphs used in experiments.
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Figure 8: Structure of the hypernetwork and policy network.
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the right-hand-side of Eq.(1) are:
𝐿1
𝑡 (𝜽 = 𝑓𝜷A (𝒉G,𝑇 ))

= E
[

min
(
ratio𝑡𝛿𝑡 , clip(ratio𝑡 , 1 − 𝜖, 1 + 𝜖)𝛿𝑡

) ]
,

ratio𝑡 =
𝜋
𝑝

𝜽G,𝑇
(𝑎𝑖𝑡 |𝑜𝑖𝑡 )

𝜋
𝑝

𝜽 old
G,𝑇
(𝑎𝑖𝑡 |𝑜𝑖𝑡 )

,

𝐿2
𝑡 (𝝓 = 𝑓𝜷C (𝒉G,𝑇 )) =

(
𝑉
𝑝

𝝓G,𝑇
(𝑜𝑡 ) −

𝑇∑︁
𝑡 ′=𝑡

𝑟
𝑝

𝑡 ′

)2
,

H(𝜋𝜽=𝑓𝜷A (𝒉G ,𝑇 ) (·|𝑜
𝑖
𝑡 )) = −E𝑎𝑖𝑡∼𝜋𝑝

𝜽G,𝑇
log𝜋𝑝𝜽G,𝑇 (𝑎

𝑖
𝑡 |𝑜𝑖𝑡 ),

where 𝑜𝑖𝑡 is the observation of the pursuer member 𝑖 ∈ 𝑝 , 𝑜𝑡 is the
global observation shared by all the pursuer members, and 𝛿𝑡 is the
TD error [22]:

𝛿𝑡 = 𝑟
𝑝
𝑡 + 𝛾𝑉

𝑝

𝝓G,𝑇
(𝑜𝑡+1) −𝑉 𝑝𝝓G,𝑇 (𝑜𝑡 ),

where 𝑟𝑝𝑡 = 0 before the game ends and 𝑟𝑝𝑡 ∈ {−1, +1} when the
game ends. The expectation is taken on a finite batch of experiences
sampled from the episode buffer. For the last term in the right-hand-
side of Eq.(1), the action distribution for the reference policy 𝜋𝑝
is constructed by setting the probability of the reference action
to 1 while all others to 0. For implementation, we use Dijkstra’s
algorithm in the package “NetworkX” to derive the reference policy.

B.5 Baselines
PSRO. See Algorithm 1 in the main text and Figure 10(a) for the
standard PSRO algorithm. The only new component is the observa-
tion representation layer. It randomly initializes the BR policy at
each epoch, i.e., trains the pursuer’s BR policy from scratch.
MT-PSRO. The state-of-the-art (SOTA) baseline adapted from [16]
by generating a larger number of RL tasks for pre-training. In these
tasks, except for the change in the evader’s policy, the game’s initial
conditions also change. The architecture and training pipeline of
MT-PSRO is shown in Figure 10(b). MT-PSRO also includes the
observation representation layer and employs the HMP method to
train the networks. Therefore, it is one of the strong baselines that
is expected to possess the ability to solve different PEGs since it is
trained by using the data sampled from different PEGs.
MT-PSRO-Aug. Although MT-PSRO is the SOTA method, compar-
ing it with our Grasper could be somewhat unfair as no information
about the initial conditions has been explicitly taken into account in
MT-PSRO. To induce a fair comparison, we introduce a novel base-
line, MT-PSRO-Aug, as shown in Figure 10(c). MT-PSRO-Aug also
employs the same three-stage training scheme as Grasper. Differ-
ently, instead of using a hypernetwork to generate the base policy,
the hidden vector of the game (obtained by the trained GNN) and
the time horizon are concatenated to the output of the observation
representation layer to get the (augmented) input to the policy
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Figure 10: Architectures and training pipelines of (a) PSRO, (b) MT-PSRO, (c) MT-PSRO-Aug, and (d) Grasper. This figure
clearly shows the differences between these methods. PSRO follows the standard procedure where the pursuer’s BR policy
is randomly initialized at each epoch. MT-PSRO is a direct adaption from previous works. MT-PSRO-Aug naively leverages
the information of the initial conditions to pre-train the base policy. Our Grasper more effectively leverages the information
through a hypernetwork which generates the base policy conditional on the initial conditions.

network. As MT-PSRO-Aug also integrates the information about
the initial conditions of PEGs, it is another strong baseline that is
expected to be capable of solving different PEGs with varying initial

conditions. More importantly, comparing Grasper with MT-PSRO-
Aug can demonstrate the necessity of introducing a hypernetwork
and thus, the superiority of our Grasper in solving diverse PEGs.
Random. Pursuers randomly select actions at any time step.



C ADDITIONAL EXPERIMENTAL RESULTS
In this section, we provide more results to complement the experi-
ments presented in the main text.

C.1 Evaluation Performance
In Figure 4 in the main text, for all methods, we set a fixed number
of episodes (10 episodes) for the PSRO procedure (fine-tuning stage).
From the results, we can see that given the same fine-tuning budget,
Grasper can start from and converge to a higher worst-case utility.
Here, we evaluate from another perspective: how long it will take
the baselines to achieve a similar utility to Grasper. For this purpose,
we keep the number of fine-tuning episodes of Grasper unchanged
while increasing the number of fine-tuning episodes of PSRO, MT-
PSRO, and MT-PSRO-Aug.

The results for different underlying maps are respectively shown
in Figure 11 to Figure 14 and the corresponding fine-tuning bud-
gets are listed in Table 4. As is expected, PSRO requires a much
more fine-tuning budget to achieve a competitive performance with
Grasper, showcasing the effectiveness of the pre-training and fine-
tuning paradigm in accelerating the PSRO procedure, which is also
observed in previous work [16]. Furthermore, even though the two
strong baselines (MT-PSRO andMT-PSRO-Aug) also (partly or fully)
employ the same techniques as Grapser, they are still struggling in
solving diverse PEGs with varying initial conditions, since during
pre-training, they either entirely ignore or only naively integrate
the information about the initial conditions of PEGs. These results
again verify the superiority of Grasper over the baselines in terms
of solution quality and generalization ability.
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Figure 11: Worst-case utilities of different methods under
different fine-tuning budgets in Grid Map.
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Figure 12: Worst-case utilities of different methods under
different fine-tuning budgets in Scale-Free Map.
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Figure 13: Worst-case utilities of different methods under
different fine-tuning budgets in Singapore Map.
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Figure 14: Worst-case utilities of different methods under
different fine-tuning budgets in Scotland-Yard Map.

Table 4: The number of episodes for fine-tuning for different
methods corresponding to Figure 11 to Figure 14.

Grasper MT-PSRO MT-PSRO
-Aug PSRO

I1

Grid 10 10 10 1000
Scale-Free 10 100 100 3000
Singapore 10 1500 1500 3000

Scotland-Yard 10 100 100 1000

I2

Grid 10 25 10 200
Scale-Free 10 30 30 2000
Singapore 10 30 30 200

Scotland-Yard 10 15 10 200

C.2 Effectiveness of Different Components
In Table 1 in the main text, we study the effectiveness of different
components in the grid map. In Figure 15 to Figure 18, we plot the
evaluation curves for different maps, and in Table 5 to Table 8, we
present the final worst-case utilities of different methods in the
corresponding maps (Table 5 is a copy of Table 1).

The results clearly demonstrate that the two components – HMP
and observation representation layer (Rep.) – are indispensable for
Grasper to achieve superior performance. As mentioned in Section
4.1, using mere index numbers of vertices is not a good choice for
representing the players’ positions in the pursuers’ observations.
In 5 out of 8 cases (Grid I1, Singapore I1 and I2, Scotland-Yard I1
and I2), we can see that using the observation representation layer
can significantly boost the performance of Grasper.
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Figure 15: Ablation studies in Grid Map.
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Figure 16: Ablation studies in Scale-Free Map.
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Figure 17: Ablation studies in Singapore Map.
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Figure 18: Ablation studies in Scotland-Yard Map.

Table 5: Ablation studies in Grid Map (copy of Table 1).

HMP Rep. Utility

I1

✓ ✓ 0.90 ± 0.01
✓ −0.54 ± 0.06

✓ −0.05 ± 0.17
−0.52 ± 0.08

I2

✓ ✓ 0.45 ± 0.04
✓ −0.60 ± 0.06

✓ −0.64 ± 0.11
−0.63 ± 0.06

Table 6: Ablation studies in Scale-Free Map.

HMP Rep. Utility

I1

✓ ✓ 0.83 ± 0.01
✓ −0.45 ± 0.09

✓ −0.52 ± 0.13
−0.66 ± 0.08

I2

✓ ✓ 0.24 ± 0.04
✓ −0.41 ± 0.06

✓ −0.65 ± 0.09
−0.62 ± 0.08

Table 7: Ablation studies in Singapore Map.

HMP Rep. Utility

I1

✓ ✓ 0.91 ± 0.01
✓ −0.78 ± 0.04

✓ 0.44 ± 0.14
−0.77 ± 0.05

I2

✓ ✓ 0.52 ± 0.06
✓ −0.60 ± 0.05

✓ −0.01 ± 0.15
−0.68 ± 0.07

Table 8: Ablation studies in Scotland-Yard Map.

HMP Rep. Utility

I1

✓ ✓ 0.89 ± 0.01
✓ −0.77 ± 0.03

✓ 0.26 ± 0.15
−0.78 ± 0.03

I2

✓ ✓ 0.65 ± 0.04
✓ −0.59 ± 0.04

✓ −0.24 ± 0.13
−0.65 ± 0.05



C.3 Training Curves
For completeness, we plot the curves of pre-pretraining and pre-
training in Figure 19 and Figure 20, respectively.
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Figure 19: Pre-pretraining curves for different maps.

0.0 0.5 1.0 1.5 2.0
Episode 1e7

0.50

0.25

0.00

0.25

0.50

T
ra

in
in

g 
U

til
ity

Grasper
MT-PSRO
MT-PSRO-Aug

(a) Grid Map
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(b) Scale-Free Map
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(c) Singapore Map
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Figure 20: Pre-training curves for different maps.
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[10] Karel Horák and Branislav Bošanskỳ. 2017. Dynamic programming for one-sided
partially observable pursuit-evasion games. In ICAART. 503–510.

[11] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: self-supervised masked graph autoencoders. In
KDD. 594–604.

[12] Linan Huang and Quanyan Zhu. 2021. A dynamic game framework for rational
and persistent robot deception with an application to deceptive pursuit-evasion.
IEEE Transactions on Automation Science and Engineering 19, 4 (2021), 2918–2932.

[13] Rufus Isaacs. 1965. Differential Games. A Mathematical Theory with Applications
to Warfare and Pursuit, Control and Optimization. John Wiley & Sons, Inc.

[14] Manish Jain, Dmytro Korzhyk, Ondřej Vaněk, Vincent Conitzer, Michal Pě-
chouček, and Milind Tambe. 2011. A double oracle algorithm for zero-sum
security games on graphs. In AAMAS. 327–334.

[15] Pengdeng Li, Xinrun Wang, Shuxin Li, Hau Chan, and Bo An. 2023. Population-
size-aware policy optimization for mean-field games. In ICLR.

[16] Shuxin Li, Xinrun Wang, Youzhi Zhang, Wanqi Xue, Jakub Černý, and Bo An.
2023. Solving large-scale pursuit-evasion games using pre-trained strategies. In
AAAI. 11586–11594.

[17] Shuxin Li, Youzhi Zhang, Xinrun Wang, Wanqi Xue, and Bo An. 2021. CFR-MIX:
Solving imperfect information extensive-form games with combinatorial action
space. In IJCAI. 3663–3669.

[18] Xiuxian Li, Min Meng, Yiguang Hong, and Jie Chen. 2022. A survey of decision
making in adversarial games. arXiv preprint arXiv:2207.07971 (2022).

[19] Victor G Lopez, Frank L Lewis, Yan Wan, Edgar N Sanchez, and Lingling Fan.
2019. Solutions for multiagent pursuit-evasion games on communication graphs:
Finite-time capture and asymptotic behaviors. IEEE Transactions on Automatic
Control 65, 5 (2019), 1911–1923.

[20] Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe.
2018. Stackelberg security games: Looking beyond a decade of success. In IJCAI.
5494–5501.

[21] Robert Socha and Bogusław Kogut. 2020. Urban video surveillance as a tool to
improve security in public spaces. Sustainability 12, 15 (2020), 6210.

[22] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[23] Tamás Vicsek. 2010. Closing in on evaders. Nature 466, 7302 (2010), 43–44.
[24] Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar

Sastry. 2002. Probabilistic pursuit-evasion games: Theory, implementation, and
experimental evaluation. IEEE Transactions on Robotics and Automation 18, 5
(2002), 662–669.

[25] Yuanda Wang, Lu Dong, and Changyin Sun. 2020. Cooperative control for multi-
player pursuit-evasion games with reinforcement learning. Neurocomputing 412
(2020), 101–114.

[26] Wanqi Xue, Bo An, and Chai Kiat Yeo. 2022. NSGZero: efficiently learning non-
exploitable policy in large-scale network security games with neural Monte Carlo
tree search. In AAAI. 4646–4653.

[27] Wanqi Xue, Youzhi Zhang, Shuxin Li, Xinrun Wang, Bo An, and Chai Kiat Yeo.
2021. Solving large-scale extensive-form network security games via neural
fictitious self-play. In IJCAI. 3713–3720.

[28] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. 2022. The surprising effectiveness of PPO in cooperative multi-agent
games. In NeurIPS Datasets and Benchmarks Track. 24611–24624.

[29] Youzhi Zhang, Bo An, Long Tran-Thanh, Zhen Wang, Jiarui Gan, and Nicholas R
Jennings. 2017. Optimal escape interdiction on transportation networks. In IJCAI.
3936–3944.

[30] Youzhi Zhang, Qingyu Guo, Bo An, Long Tran-Thanh, and Nicholas R Jennings.
2019. Optimal interdiction of urban criminals with the aid of real-time informa-
tion. In AAAI. 1262–1269.


	A More Discussion
	B Implementation Details
	B.1 Environment
	B.2 Hyperparameters
	B.3 Network Structure
	B.4 Loss Function
	B.5 Baselines

	C Additional Experimental Results
	C.1 Evaluation Performance
	C.2 Effectiveness of Different Components
	C.3 Training Curves

	References

